Cargando…
Predicting Adolescent Intervention Non-responsiveness for Precision HIV Prevention Using Machine Learning
Interventions to teach protective behaviors may be differentially effective within an adolescent population. Identifying the characteristics of youth who are less likely to respond to an intervention can guide program modifications to improve its effectiveness. Using comprehensive longitudinal data...
Autores principales: | Wang, Bo, Liu, Feifan, Deveaux, Lynette, Ash, Arlene, Gerber, Ben, Allison, Jeroan, Herbert, Carly, Poitier, Maxwell, MacDonell, Karen, Li, Xiaoming, Stanton, Bonita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129965/ https://www.ncbi.nlm.nih.gov/pubmed/36255592 http://dx.doi.org/10.1007/s10461-022-03874-4 |
Ejemplares similares
-
Comparing standard versus enhanced implementation of an evidence-based HIV prevention program among Bahamian sixth grade students: findings from nationwide implementation trials
por: Wang, Bo, et al.
Publicado: (2022) -
Factors influencing implementation dose and fidelity thereof and related student outcomes of an evidence-based national HIV prevention program
por: Wang, Bo, et al.
Publicado: (2015) -
Multi-year school-based implementation and student outcomes of an evidence-based risk reduction intervention
por: Wang, Bo, et al.
Publicado: (2017) -
A Protection Motivation Theory-Based Scale for Tobacco Research among Chinese Youth
por: MacDonell, Karen, et al.
Publicado: (2013) -
Implementing a school-based HIV prevention program during public health emergencies: lessons learned in The Bahamas
por: Deveaux, Lynette, et al.
Publicado: (2022)