Cargando…

Synopsis of the aurantiactinomyxon collective group (Cnidaria, Myxozoa), with a discussion on the validity of morphotype definition and demise of guyenotia

Aurantiactinomyxon is one of the most diverse myxozoan collective groups, comprising types that mostly infect freshwater and marine oligochaetes belonging to the family Naididae Ehrenberg, 1828, but also Lumbriculidae Claus, 1872. In this study, a comprehensive revision of all known aurantiactinomyx...

Descripción completa

Detalles Bibliográficos
Autor principal: Rocha, Sónia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129985/
https://www.ncbi.nlm.nih.gov/pubmed/37060426
http://dx.doi.org/10.1007/s11230-023-10089-1
Descripción
Sumario:Aurantiactinomyxon is one of the most diverse myxozoan collective groups, comprising types that mostly infect freshwater and marine oligochaetes belonging to the family Naididae Ehrenberg, 1828, but also Lumbriculidae Claus, 1872. In this study, a comprehensive revision of all known aurantiactinomyxon types is performed and highlights the fallibility of using the form and length of the valvular processes as main criterion for differentiating among style-less actinospore morphotypes. The demise of the guyenotia collective group is proposed based on the ambiguous features of several types that allow conformity with both the aurantiactinomyxon and guyenotia definitions. Nonetheless, the information presently available clearly shows that a general shift is needed in our approach to actinospore grouping, which should probably be based on actinospore functionality relative to environment and host ecology, rather than on morphology. Life cycle studies based on experimental transmission and molecular inferences of the 18S rDNA have linked aurantiactinomyxon (including former guyenotia) to myxozoans belonging to a diverse array of genera, including Chloromyxum, Henneguya, Hoferellus, Myxobolus, Paramyxidium, Thelohanellus and Zschokkella. This undoubtedly shows a high capacity of the aurantiactinomyxon morphotype to promote infection in intrinsically distinct vertebrate hosts and environmental habitats, consequently increasing interest in its study for attaining a better understanding of myxozoan-host interactions. The identification of novel and known types, however, is impeded by the lack of concise information allowing a comprehensive analysis of biological, morphological, and molecular criteria. In this sense, the compilation of data presented in this study will ultimately help researchers seeking to perform reliable identifications.