Cargando…
Tailoring the resonant modes in liquid crystal based all-dielectric metasurfaces
High refractive index dielectic metasurfaces are being increasingly studied for their novel light-matter interactions such as Huygen’s lens, absolute transmission and complete absorption. Liquid crystal is a versatile medium with high dielectric anisotropy and hence interaction of light with the die...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130025/ https://www.ncbi.nlm.nih.gov/pubmed/37185602 http://dx.doi.org/10.1038/s41598-023-33693-z |
Sumario: | High refractive index dielectic metasurfaces are being increasingly studied for their novel light-matter interactions such as Huygen’s lens, absolute transmission and complete absorption. Liquid crystal is a versatile medium with high dielectric anisotropy and hence interaction of light with the dielectric metasurfaces immersed in liquid crystal medium show complex behaviour compared to isotropic media. Most of the investigations on liquid crystal based electromagnetic response of dielectric metasurfaces focus on tunability of resonant frequencies and switching between the resonant states as a function of external stimuli such as electric field, temperature, etc. In the current work we present a detailed numerical investigation based on studies of scattering response, near-field and far-field radiation profiles of cubic Tellurium metasurfaces as a function of liquid crystal orientations in infrared frequencies. We show that the near-field and far-field radiation profiles of primary resonant modes—electric dipoles and magnetic dipoles reorient as a function of liquid crystal orientations. In particular, we study the effect of liquid crystal orientations on novel non-radiative states called anapoles. It is observed that liquid crystal orientations effect the excitation and orientation of anapole states within the Tellurium structures. This paves way for design of an electrically-driven switch between non-radiative and radiative states. Further, controlling the near-field and far-field radiation profiles opens up possibilities in designing liquid crystal based tunable multi-functional metasurfaces which can change the directionality of incident light. |
---|