Cargando…
A spatial–temporal graph deep learning model for urban flood nowcasting leveraging heterogeneous community features
Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed fe...
Autores principales: | Farahmand, Hamed, Xu, Yuanchang, Mostafavi, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130063/ https://www.ncbi.nlm.nih.gov/pubmed/37185364 http://dx.doi.org/10.1038/s41598-023-32548-x |
Ejemplares similares
-
Skilful nowcasting of extreme precipitation with NowcastNet
por: Zhang, Yuchen, et al.
Publicado: (2023) -
The Compound Effect of Spatial and Temporal Resolutions on the Accuracy of Urban Flood Simulation
por: Li, Xiting, et al.
Publicado: (2022) -
Latent sub-structural resilience mechanisms in temporal human mobility networks during urban flooding
por: Rajput, Akhil Anil, et al.
Publicado: (2023) -
Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches
por: Lu, Fred S., et al.
Publicado: (2019) -
Nowcasting Japan’s GDP
por: Hayashi, Fumio, et al.
Publicado: (2022)