Cargando…
A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. He...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130143/ https://www.ncbi.nlm.nih.gov/pubmed/37169741 http://dx.doi.org/10.1038/s41467-023-37996-7 |
_version_ | 1785030906313965568 |
---|---|
author | Forrest, Iain S. Petrazzini, Ben O. Duffy, Áine Park, Joshua K. O’Neal, Anya J. Jordan, Daniel M. Rocheleau, Ghislain Nadkarni, Girish N. Cho, Judy H. Blazer, Ashira D. Do, Ron |
author_facet | Forrest, Iain S. Petrazzini, Ben O. Duffy, Áine Park, Joshua K. O’Neal, Anya J. Jordan, Daniel M. Rocheleau, Ghislain Nadkarni, Girish N. Cho, Judy H. Blazer, Ashira D. Do, Ron |
author_sort | Forrest, Iain S. |
collection | PubMed |
description | Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. Here, we developed and tested a machine learning model to identify patients who should receive rheumatological evaluation for SARDs using longitudinal electronic health records of 161,584 individuals from two institutions. The model demonstrated high performance for predicting cases of autoantibody-tested individuals in a validation set, an external test set, and an independent cohort with a broader case definition. This approach identified more individuals for autoantibody testing compared with current clinical standards and a greater proportion of autoantibody carriers among those tested. Diagnoses of SARDs and other autoimmune conditions increased with higher model probabilities. The model detected a need for autoantibody testing and rheumatology encounters up to five years before the test date and assessment date, respectively. Altogether, these findings illustrate that the clinical manifestations of a diverse array of autoimmune conditions are detectable in electronic health records using machine learning, which may help systematize and accelerate autoimmune testing. |
format | Online Article Text |
id | pubmed-10130143 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101301432023-04-27 A machine learning model identifies patients in need of autoimmune disease testing using electronic health records Forrest, Iain S. Petrazzini, Ben O. Duffy, Áine Park, Joshua K. O’Neal, Anya J. Jordan, Daniel M. Rocheleau, Ghislain Nadkarni, Girish N. Cho, Judy H. Blazer, Ashira D. Do, Ron Nat Commun Article Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. Here, we developed and tested a machine learning model to identify patients who should receive rheumatological evaluation for SARDs using longitudinal electronic health records of 161,584 individuals from two institutions. The model demonstrated high performance for predicting cases of autoantibody-tested individuals in a validation set, an external test set, and an independent cohort with a broader case definition. This approach identified more individuals for autoantibody testing compared with current clinical standards and a greater proportion of autoantibody carriers among those tested. Diagnoses of SARDs and other autoimmune conditions increased with higher model probabilities. The model detected a need for autoantibody testing and rheumatology encounters up to five years before the test date and assessment date, respectively. Altogether, these findings illustrate that the clinical manifestations of a diverse array of autoimmune conditions are detectable in electronic health records using machine learning, which may help systematize and accelerate autoimmune testing. Nature Publishing Group UK 2023-04-25 /pmc/articles/PMC10130143/ /pubmed/37169741 http://dx.doi.org/10.1038/s41467-023-37996-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Forrest, Iain S. Petrazzini, Ben O. Duffy, Áine Park, Joshua K. O’Neal, Anya J. Jordan, Daniel M. Rocheleau, Ghislain Nadkarni, Girish N. Cho, Judy H. Blazer, Ashira D. Do, Ron A machine learning model identifies patients in need of autoimmune disease testing using electronic health records |
title | A machine learning model identifies patients in need of autoimmune disease testing using electronic health records |
title_full | A machine learning model identifies patients in need of autoimmune disease testing using electronic health records |
title_fullStr | A machine learning model identifies patients in need of autoimmune disease testing using electronic health records |
title_full_unstemmed | A machine learning model identifies patients in need of autoimmune disease testing using electronic health records |
title_short | A machine learning model identifies patients in need of autoimmune disease testing using electronic health records |
title_sort | machine learning model identifies patients in need of autoimmune disease testing using electronic health records |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130143/ https://www.ncbi.nlm.nih.gov/pubmed/37169741 http://dx.doi.org/10.1038/s41467-023-37996-7 |
work_keys_str_mv | AT forrestiains amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT petrazzinibeno amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT duffyaine amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT parkjoshuak amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT onealanyaj amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT jordandanielm amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT rocheleaughislain amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT nadkarnigirishn amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT chojudyh amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT blazerashirad amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT doron amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT forrestiains machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT petrazzinibeno machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT duffyaine machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT parkjoshuak machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT onealanyaj machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT jordandanielm machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT rocheleaughislain machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT nadkarnigirishn machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT chojudyh machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT blazerashirad machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords AT doron machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords |