Cargando…

A machine learning model identifies patients in need of autoimmune disease testing using electronic health records

Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Forrest, Iain S., Petrazzini, Ben O., Duffy, Áine, Park, Joshua K., O’Neal, Anya J., Jordan, Daniel M., Rocheleau, Ghislain, Nadkarni, Girish N., Cho, Judy H., Blazer, Ashira D., Do, Ron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130143/
https://www.ncbi.nlm.nih.gov/pubmed/37169741
http://dx.doi.org/10.1038/s41467-023-37996-7
_version_ 1785030906313965568
author Forrest, Iain S.
Petrazzini, Ben O.
Duffy, Áine
Park, Joshua K.
O’Neal, Anya J.
Jordan, Daniel M.
Rocheleau, Ghislain
Nadkarni, Girish N.
Cho, Judy H.
Blazer, Ashira D.
Do, Ron
author_facet Forrest, Iain S.
Petrazzini, Ben O.
Duffy, Áine
Park, Joshua K.
O’Neal, Anya J.
Jordan, Daniel M.
Rocheleau, Ghislain
Nadkarni, Girish N.
Cho, Judy H.
Blazer, Ashira D.
Do, Ron
author_sort Forrest, Iain S.
collection PubMed
description Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. Here, we developed and tested a machine learning model to identify patients who should receive rheumatological evaluation for SARDs using longitudinal electronic health records of 161,584 individuals from two institutions. The model demonstrated high performance for predicting cases of autoantibody-tested individuals in a validation set, an external test set, and an independent cohort with a broader case definition. This approach identified more individuals for autoantibody testing compared with current clinical standards and a greater proportion of autoantibody carriers among those tested. Diagnoses of SARDs and other autoimmune conditions increased with higher model probabilities. The model detected a need for autoantibody testing and rheumatology encounters up to five years before the test date and assessment date, respectively. Altogether, these findings illustrate that the clinical manifestations of a diverse array of autoimmune conditions are detectable in electronic health records using machine learning, which may help systematize and accelerate autoimmune testing.
format Online
Article
Text
id pubmed-10130143
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101301432023-04-27 A machine learning model identifies patients in need of autoimmune disease testing using electronic health records Forrest, Iain S. Petrazzini, Ben O. Duffy, Áine Park, Joshua K. O’Neal, Anya J. Jordan, Daniel M. Rocheleau, Ghislain Nadkarni, Girish N. Cho, Judy H. Blazer, Ashira D. Do, Ron Nat Commun Article Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. Here, we developed and tested a machine learning model to identify patients who should receive rheumatological evaluation for SARDs using longitudinal electronic health records of 161,584 individuals from two institutions. The model demonstrated high performance for predicting cases of autoantibody-tested individuals in a validation set, an external test set, and an independent cohort with a broader case definition. This approach identified more individuals for autoantibody testing compared with current clinical standards and a greater proportion of autoantibody carriers among those tested. Diagnoses of SARDs and other autoimmune conditions increased with higher model probabilities. The model detected a need for autoantibody testing and rheumatology encounters up to five years before the test date and assessment date, respectively. Altogether, these findings illustrate that the clinical manifestations of a diverse array of autoimmune conditions are detectable in electronic health records using machine learning, which may help systematize and accelerate autoimmune testing. Nature Publishing Group UK 2023-04-25 /pmc/articles/PMC10130143/ /pubmed/37169741 http://dx.doi.org/10.1038/s41467-023-37996-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Forrest, Iain S.
Petrazzini, Ben O.
Duffy, Áine
Park, Joshua K.
O’Neal, Anya J.
Jordan, Daniel M.
Rocheleau, Ghislain
Nadkarni, Girish N.
Cho, Judy H.
Blazer, Ashira D.
Do, Ron
A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
title A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
title_full A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
title_fullStr A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
title_full_unstemmed A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
title_short A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
title_sort machine learning model identifies patients in need of autoimmune disease testing using electronic health records
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130143/
https://www.ncbi.nlm.nih.gov/pubmed/37169741
http://dx.doi.org/10.1038/s41467-023-37996-7
work_keys_str_mv AT forrestiains amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT petrazzinibeno amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT duffyaine amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT parkjoshuak amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT onealanyaj amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT jordandanielm amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT rocheleaughislain amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT nadkarnigirishn amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT chojudyh amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT blazerashirad amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT doron amachinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT forrestiains machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT petrazzinibeno machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT duffyaine machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT parkjoshuak machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT onealanyaj machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT jordandanielm machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT rocheleaughislain machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT nadkarnigirishn machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT chojudyh machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT blazerashirad machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords
AT doron machinelearningmodelidentifiespatientsinneedofautoimmunediseasetestingusingelectronichealthrecords