Cargando…
A multi-view contrastive learning for heterogeneous network embedding
Graph contrastive learning has been developed to learn discriminative node representations on homogeneous graphs. However, it is not clear how to augment the heterogeneous graphs without substantially altering the underlying semantics or how to design appropriate pretext tasks to fully capture the r...
Autores principales: | Li, Qi, Chen, Wenping, Fang, Zhaoxi, Ying, Changtian, Wang, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130187/ https://www.ncbi.nlm.nih.gov/pubmed/37185784 http://dx.doi.org/10.1038/s41598-023-33324-7 |
Ejemplares similares
-
Multi-Task Learning Based Network Embedding
por: Wang, Shanfeng, et al.
Publicado: (2020) -
MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach
por: Pio-Lopez, Léo, et al.
Publicado: (2021) -
Multi-view heterogeneous molecular network representation learning for protein–protein interaction prediction
por: Su, Xiao-Rui, et al.
Publicado: (2022) -
Virtual Network Embedding for Multi-Domain Heterogeneous Converged Optical Networks: Issues and Challenges
por: Zong, Yue, et al.
Publicado: (2020) -
A network embedding model for pathogenic genes prediction by multi-path random walking on heterogeneous network
por: Xu, Bo, et al.
Publicado: (2019)