Cargando…
Spike timing-dependent plasticity under imbalanced excitation and inhibition reduces the complexity of neural activity
Excitatory and inhibitory neurons are fundamental components of the brain, and healthy neural circuits are well balanced between excitation and inhibition (E/I balance). However, it is not clear how an E/I imbalance affects the self-organization of the network structure and function in general. In t...
Autores principales: | Park, Jihoon, Kawai, Yuji, Asada, Minoru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130424/ https://www.ncbi.nlm.nih.gov/pubmed/37122995 http://dx.doi.org/10.3389/fncom.2023.1169288 |
Ejemplares similares
-
Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
por: Chakraborty, Biswadeep, et al.
Publicado: (2021) -
Spike-Timing Dependent Plasticity Beyond Synapse – Pre- and Post-Synaptic Plasticity of Intrinsic Neuronal Excitability
por: Debanne, Dominique, et al.
Publicado: (2010) -
Macroscopic Cluster Organizations Change the Complexity of Neural Activity
por: Park, Jihoon, et al.
Publicado: (2019) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Liu, Fangxin, et al.
Publicado: (2021) -
Reservoir computing using self-sustained oscillations in a locally connected neural network
por: Kawai, Yuji, et al.
Publicado: (2023)