Cargando…
Face-based age estimation using improved Swin Transformer with attention-based convolution
Recently Transformer models is new direction in the computer vision field, which is based on self multihead attention mechanism. Compared with the convolutional neural network, this Transformer uses the self-attention mechanism to capture global contextual information and extract more strong feature...
Autores principales: | Shi, Chaojun, Zhao, Shiwei, Zhang, Ke, Wang, Yibo, Liang, Longping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130448/ https://www.ncbi.nlm.nih.gov/pubmed/37123378 http://dx.doi.org/10.3389/fnins.2023.1136934 |
Ejemplares similares
-
Swin-MFA: A Multi-Modal Fusion Attention Network Based on Swin-Transformer for Low-Light Image Human Segmentation
por: Yi, Xunpeng, et al.
Publicado: (2022) -
FEA-Swin: Foreground Enhancement Attention Swin Transformer Network for Accurate UAV-Based Dense Object Detection
por: Xu, Wenyu, et al.
Publicado: (2022) -
ST-YOLOA: a Swin-transformer-based YOLO model with an attention mechanism for SAR ship detection under complex background
por: Zhao, Kai, et al.
Publicado: (2023) -
S-Swin Transformer: simplified Swin Transformer model for offline handwritten Chinese character recognition
por: Dan, Yongping, et al.
Publicado: (2022) -
Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
por: Hu, Jianhua, et al.
Publicado: (2022)