Cargando…
Social rank-dependent effects of testosterone on huddling strategies in mice
Huddling behavior, a typical social interaction among animals, has the benefits of obtaining social support and adapting environment. Huddling behavior is determined by social (social hierarchy), environmental factors (stress events), and the neuroendocrine system. Nevertheless, the huddling behavio...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130478/ https://www.ncbi.nlm.nih.gov/pubmed/37124418 http://dx.doi.org/10.1016/j.isci.2023.106516 |
Sumario: | Huddling behavior, a typical social interaction among animals, has the benefits of obtaining social support and adapting environment. Huddling behavior is determined by social (social hierarchy), environmental factors (stress events), and the neuroendocrine system. Nevertheless, the huddling behavior of different social hierarchies and the underlying mechanisms have not been fully elucidated. In the present study, acute 2-methyl-2-thiazoline (2 MT) can induce huddling behavior and significantly increase serum levels of testosterone (T) in mice; and the increased T level was positively correlated with huddling behavior. Further, the T treatment significantly increased the huddling behavior in mice under 2 MT exposure condition. More interestingly, T can quickly promote dominant individuals to occupy safe positions when huddling together under predator odor. Collectively, T can rapidly regulate the individual’s adaptive response to threats in a social rank-dependent manner, which provides a new perspective for the in-depth study of the influencing factors and underlying mechanisms of huddling behavior. |
---|