Cargando…

Online control of the False Discovery Rate in group-sequential platform trials

When testing multiple hypotheses, a suitable error rate should be controlled even in exploratory trials. Conventional methods to control the False Discovery Rate assume that all p-values are available at the time point of test decision. In platform trials, however, treatment arms enter and leave the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zehetmayer, Sonja, Posch, Martin, Koenig, Franz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130539/
https://www.ncbi.nlm.nih.gov/pubmed/36189481
http://dx.doi.org/10.1177/09622802221129051
Descripción
Sumario:When testing multiple hypotheses, a suitable error rate should be controlled even in exploratory trials. Conventional methods to control the False Discovery Rate assume that all p-values are available at the time point of test decision. In platform trials, however, treatment arms enter and leave the trial at different times during its conduct. Therefore, the actual number of treatments and hypothesis tests is not fixed in advance and hypotheses are not tested at once, but sequentially. Recently, for such a setting the concept of online control of the False Discovery Rate was introduced. We propose several heuristic variations of the LOND procedure (significance Levels based On Number of Discoveries) that incorporate interim analyses for platform trials, and study their online False Discovery Rate via simulations. To adjust for the interim looks spending functions are applied with O’Brien-Fleming or Pocock type group-sequential boundaries. The power depends on the prior distribution of effect sizes, for example, whether true alternatives are uniformly distributed over time or not. We consider the choice of design parameters for the LOND procedure to maximize the overall power and investigate the impact on the False Discovery Rate by including both concurrent and non-concurrent control data.