Cargando…
RescueSNN: enabling reliable executions on spiking neural network accelerators under permanent faults
To maximize the performance and energy efficiency of Spiking Neural Network (SNN) processing on resource-constrained embedded systems, specialized hardware accelerators/chips are employed. However, these SNN chips may suffer from permanent faults which can affect the functionality of weight memory a...
Autores principales: | Putra, Rachmad Vidya Wicaksana, Hanif, Muhammad Abdullah, Shafique, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130579/ https://www.ncbi.nlm.nih.gov/pubmed/37123371 http://dx.doi.org/10.3389/fnins.2023.1159440 |
Ejemplares similares
-
EnforceSNN: Enabling resilient and energy-efficient spiking neural network inference considering approximate DRAMs for embedded systems
por: Putra, Rachmad Vidya Wicaksana, et al.
Publicado: (2022) -
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022) -
Spiking Neural Network (SNN) With Memristor Synapses Having Non-linear Weight Update
por: Kim, Taeyoon, et al.
Publicado: (2021) -
EvtSNN: Event-driven SNN simulator optimized by population and pre-filtering
por: Mo, Lingfei, et al.
Publicado: (2022) -
Spike-Based Approximate Backpropagation Algorithm of Brain-Inspired Deep SNN for Sonar Target Classification
por: Liu, Yang, et al.
Publicado: (2022)