Cargando…
Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances
DNA polymorphic markers and self-defined ethnicity groupings are used to group individuals with shared ancient geographic ancestry. Here we studied whether ancestral relationships between individuals could be identified from metabolic screening data reported by the California newborn screening (NBS)...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131177/ https://www.ncbi.nlm.nih.gov/pubmed/36252453 http://dx.doi.org/10.1016/j.ymgme.2022.10.002 |
_version_ | 1785031119708618752 |
---|---|
author | Peng, Gang Pakstis, Andrew J. Gandotra, Neeru Cowan, Tina M. Zhao, Hongyu Kidd, Kenneth K. Scharfe, Curt |
author_facet | Peng, Gang Pakstis, Andrew J. Gandotra, Neeru Cowan, Tina M. Zhao, Hongyu Kidd, Kenneth K. Scharfe, Curt |
author_sort | Peng, Gang |
collection | PubMed |
description | DNA polymorphic markers and self-defined ethnicity groupings are used to group individuals with shared ancient geographic ancestry. Here we studied whether ancestral relationships between individuals could be identified from metabolic screening data reported by the California newborn screening (NBS) program. NBS data includes 41 blood metabolites measured by tandem mass spectrometry from singleton babies in 17 parent-reported ethnicity groupings. Ethnicity-associated differences identified for 71% of NBS metabolites (29 of 41, Cohen's d > 0.5) showed larger differences in blood levels of acylcarnitines than of amino acids (P < 1e-4). Ametabolic distance measure, developed to compare ethnic groupings based on metabolic differences, showed low positive correlation with genetic and ancient geographic distances between the groups' ancestral world populations. Several outlier group pairs were identified with larger genetic and smaller metabolic distances (Black versus White) or with smaller genetic and larger metabolic distances (Chinese versus Japanese) indicating the influence of genetic and of environmental factors on metabolism. Using machine learning, comparison of metabolic profiles between all pairs of ethnic groupings distinguished individuals with larger genetic distance (Black versus Chinese, AUC = 0.96), while genetically more similar individuals could not be separated metabolically (Hispanic versus Native American, AUC = 0.51). Additionally, we identified metabolites informative for inferring metabolic ancestry in individuals from genetically similar populations, which included biomarkers for inborn metabolic disorders (C10:1, C12:1, C3, C5OH, Leucine-Isoleucine). This work sheds new light on metabolic differences in healthy newborns in diverse populations, which could have implications for improving genetic disease screening. |
format | Online Article Text |
id | pubmed-10131177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-101311772023-04-26 Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances Peng, Gang Pakstis, Andrew J. Gandotra, Neeru Cowan, Tina M. Zhao, Hongyu Kidd, Kenneth K. Scharfe, Curt Mol Genet Metab Article DNA polymorphic markers and self-defined ethnicity groupings are used to group individuals with shared ancient geographic ancestry. Here we studied whether ancestral relationships between individuals could be identified from metabolic screening data reported by the California newborn screening (NBS) program. NBS data includes 41 blood metabolites measured by tandem mass spectrometry from singleton babies in 17 parent-reported ethnicity groupings. Ethnicity-associated differences identified for 71% of NBS metabolites (29 of 41, Cohen's d > 0.5) showed larger differences in blood levels of acylcarnitines than of amino acids (P < 1e-4). Ametabolic distance measure, developed to compare ethnic groupings based on metabolic differences, showed low positive correlation with genetic and ancient geographic distances between the groups' ancestral world populations. Several outlier group pairs were identified with larger genetic and smaller metabolic distances (Black versus White) or with smaller genetic and larger metabolic distances (Chinese versus Japanese) indicating the influence of genetic and of environmental factors on metabolism. Using machine learning, comparison of metabolic profiles between all pairs of ethnic groupings distinguished individuals with larger genetic distance (Black versus Chinese, AUC = 0.96), while genetically more similar individuals could not be separated metabolically (Hispanic versus Native American, AUC = 0.51). Additionally, we identified metabolites informative for inferring metabolic ancestry in individuals from genetically similar populations, which included biomarkers for inborn metabolic disorders (C10:1, C12:1, C3, C5OH, Leucine-Isoleucine). This work sheds new light on metabolic differences in healthy newborns in diverse populations, which could have implications for improving genetic disease screening. 2022-11 2022-10-13 /pmc/articles/PMC10131177/ /pubmed/36252453 http://dx.doi.org/10.1016/j.ymgme.2022.10.002 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Peng, Gang Pakstis, Andrew J. Gandotra, Neeru Cowan, Tina M. Zhao, Hongyu Kidd, Kenneth K. Scharfe, Curt Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances |
title | Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances |
title_full | Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances |
title_fullStr | Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances |
title_full_unstemmed | Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances |
title_short | Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances |
title_sort | metabolic diversity in human populations and correlation with genetic and ancestral geographic distances |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131177/ https://www.ncbi.nlm.nih.gov/pubmed/36252453 http://dx.doi.org/10.1016/j.ymgme.2022.10.002 |
work_keys_str_mv | AT penggang metabolicdiversityinhumanpopulationsandcorrelationwithgeneticandancestralgeographicdistances AT pakstisandrewj metabolicdiversityinhumanpopulationsandcorrelationwithgeneticandancestralgeographicdistances AT gandotraneeru metabolicdiversityinhumanpopulationsandcorrelationwithgeneticandancestralgeographicdistances AT cowantinam metabolicdiversityinhumanpopulationsandcorrelationwithgeneticandancestralgeographicdistances AT zhaohongyu metabolicdiversityinhumanpopulationsandcorrelationwithgeneticandancestralgeographicdistances AT kiddkennethk metabolicdiversityinhumanpopulationsandcorrelationwithgeneticandancestralgeographicdistances AT scharfecurt metabolicdiversityinhumanpopulationsandcorrelationwithgeneticandancestralgeographicdistances |