Cargando…
Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust
[Image: see text] Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131214/ https://www.ncbi.nlm.nih.gov/pubmed/37124285 http://dx.doi.org/10.1021/jacsau.3c00092 |
_version_ | 1785031128550211584 |
---|---|
author | Pedersen, Simon S. Batista, Gabriel M. F. Henriksen, Martin L. Hammershøj, Hans Christian D. Hopmann, Kathrin H. Skrydstrup, Troels |
author_facet | Pedersen, Simon S. Batista, Gabriel M. F. Henriksen, Martin L. Hammershøj, Hans Christian D. Hopmann, Kathrin H. Skrydstrup, Troels |
author_sort | Pedersen, Simon S. |
collection | PubMed |
description | [Image: see text] Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation–catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties. |
format | Online Article Text |
id | pubmed-10131214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101312142023-04-27 Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust Pedersen, Simon S. Batista, Gabriel M. F. Henriksen, Martin L. Hammershøj, Hans Christian D. Hopmann, Kathrin H. Skrydstrup, Troels JACS Au [Image: see text] Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation–catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties. American Chemical Society 2023-04-10 /pmc/articles/PMC10131214/ /pubmed/37124285 http://dx.doi.org/10.1021/jacsau.3c00092 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Pedersen, Simon S. Batista, Gabriel M. F. Henriksen, Martin L. Hammershøj, Hans Christian D. Hopmann, Kathrin H. Skrydstrup, Troels Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust |
title | Lignocellulose Conversion
via Catalytic Transformations
Yields Methoxyterephthalic Acid Directly from Sawdust |
title_full | Lignocellulose Conversion
via Catalytic Transformations
Yields Methoxyterephthalic Acid Directly from Sawdust |
title_fullStr | Lignocellulose Conversion
via Catalytic Transformations
Yields Methoxyterephthalic Acid Directly from Sawdust |
title_full_unstemmed | Lignocellulose Conversion
via Catalytic Transformations
Yields Methoxyterephthalic Acid Directly from Sawdust |
title_short | Lignocellulose Conversion
via Catalytic Transformations
Yields Methoxyterephthalic Acid Directly from Sawdust |
title_sort | lignocellulose conversion
via catalytic transformations
yields methoxyterephthalic acid directly from sawdust |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131214/ https://www.ncbi.nlm.nih.gov/pubmed/37124285 http://dx.doi.org/10.1021/jacsau.3c00092 |
work_keys_str_mv | AT pedersensimons lignocelluloseconversionviacatalytictransformationsyieldsmethoxyterephthalicaciddirectlyfromsawdust AT batistagabrielmf lignocelluloseconversionviacatalytictransformationsyieldsmethoxyterephthalicaciddirectlyfromsawdust AT henriksenmartinl lignocelluloseconversionviacatalytictransformationsyieldsmethoxyterephthalicaciddirectlyfromsawdust AT hammershøjhanschristiand lignocelluloseconversionviacatalytictransformationsyieldsmethoxyterephthalicaciddirectlyfromsawdust AT hopmannkathrinh lignocelluloseconversionviacatalytictransformationsyieldsmethoxyterephthalicaciddirectlyfromsawdust AT skrydstruptroels lignocelluloseconversionviacatalytictransformationsyieldsmethoxyterephthalicaciddirectlyfromsawdust |