Cargando…

Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)(2)](2+)

[Image: see text] The properties of transition-metal complexes and their chemical dynamics can be effectively modified with ligand substitutions, and theory can be a great aid to such molecular engineering. In this paper, we first theoretically explored how substitution with a Cl atom at different p...

Descripción completa

Detalles Bibliográficos
Autores principales: Papp, Mariann, Keszthelyi, Tamás, Vancza, Andor, Bajnóczi, Éva G., Kováts, Éva, Németh, Zoltán, Bogdán, Csilla, Bazsó, Gábor, Rozgonyi, Tamás, Vankó, György
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131222/
https://www.ncbi.nlm.nih.gov/pubmed/37039430
http://dx.doi.org/10.1021/acs.inorgchem.3c00271
_version_ 1785031131421212672
author Papp, Mariann
Keszthelyi, Tamás
Vancza, Andor
Bajnóczi, Éva G.
Kováts, Éva
Németh, Zoltán
Bogdán, Csilla
Bazsó, Gábor
Rozgonyi, Tamás
Vankó, György
author_facet Papp, Mariann
Keszthelyi, Tamás
Vancza, Andor
Bajnóczi, Éva G.
Kováts, Éva
Németh, Zoltán
Bogdán, Csilla
Bazsó, Gábor
Rozgonyi, Tamás
Vankó, György
author_sort Papp, Mariann
collection PubMed
description [Image: see text] The properties of transition-metal complexes and their chemical dynamics can be effectively modified with ligand substitutions, and theory can be a great aid to such molecular engineering. In this paper, we first theoretically explored how substitution with a Cl atom at different positions of the terpyridine ligand affects the electronic structure of the [Fe(terpy)(2)](2+) complex. We found that besides the substitution at position 4′, the next most promising candidate to cause substantial electronic effects is that where the side pyridine ring is substituted at position 5 (β). Therefore, next, we examined in detail the Fe(II) complexes of the 5-chloro and 5,5″-dichloro derivatives of terpy, theoretically and experimentally, to reveal how these substitutions modify the ground state properties and the lifetime of the excited quintet state in such complexes. In addition, we extend the investigation to the complexes of the analogously substituted derivatives of 4′-SMe-terpy. The substitution at position(s) 5 (and 5″) with Cl lowers the energy of the quintet state and increases its lifetime; the results on the 4′-SMe-substituted complexes show similar changes with these two substitutions, verifying that these effects are more or less additive. This study contributes to the enhancement of our molecular engineering toolset for modifying the potential energy landscape of similar complexes.
format Online
Article
Text
id pubmed-10131222
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101312222023-04-27 Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)(2)](2+) Papp, Mariann Keszthelyi, Tamás Vancza, Andor Bajnóczi, Éva G. Kováts, Éva Németh, Zoltán Bogdán, Csilla Bazsó, Gábor Rozgonyi, Tamás Vankó, György Inorg Chem [Image: see text] The properties of transition-metal complexes and their chemical dynamics can be effectively modified with ligand substitutions, and theory can be a great aid to such molecular engineering. In this paper, we first theoretically explored how substitution with a Cl atom at different positions of the terpyridine ligand affects the electronic structure of the [Fe(terpy)(2)](2+) complex. We found that besides the substitution at position 4′, the next most promising candidate to cause substantial electronic effects is that where the side pyridine ring is substituted at position 5 (β). Therefore, next, we examined in detail the Fe(II) complexes of the 5-chloro and 5,5″-dichloro derivatives of terpy, theoretically and experimentally, to reveal how these substitutions modify the ground state properties and the lifetime of the excited quintet state in such complexes. In addition, we extend the investigation to the complexes of the analogously substituted derivatives of 4′-SMe-terpy. The substitution at position(s) 5 (and 5″) with Cl lowers the energy of the quintet state and increases its lifetime; the results on the 4′-SMe-substituted complexes show similar changes with these two substitutions, verifying that these effects are more or less additive. This study contributes to the enhancement of our molecular engineering toolset for modifying the potential energy landscape of similar complexes. American Chemical Society 2023-04-11 /pmc/articles/PMC10131222/ /pubmed/37039430 http://dx.doi.org/10.1021/acs.inorgchem.3c00271 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Papp, Mariann
Keszthelyi, Tamás
Vancza, Andor
Bajnóczi, Éva G.
Kováts, Éva
Németh, Zoltán
Bogdán, Csilla
Bazsó, Gábor
Rozgonyi, Tamás
Vankó, György
Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)(2)](2+)
title Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)(2)](2+)
title_full Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)(2)](2+)
title_fullStr Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)(2)](2+)
title_full_unstemmed Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)(2)](2+)
title_short Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)(2)](2+)
title_sort molecular engineering to tune functionality: the case of cl-substituted [fe(terpy)(2)](2+)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131222/
https://www.ncbi.nlm.nih.gov/pubmed/37039430
http://dx.doi.org/10.1021/acs.inorgchem.3c00271
work_keys_str_mv AT pappmariann molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT keszthelyitamas molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT vanczaandor molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT bajnoczievag molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT kovatseva molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT nemethzoltan molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT bogdancsilla molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT bazsogabor molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT rozgonyitamas molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22
AT vankogyorgy molecularengineeringtotunefunctionalitythecaseofclsubstitutedfeterpy22