Cargando…
A self-inspected adaptive SMOTE algorithm (SASMOTE) for highly imbalanced data classification in healthcare
In many healthcare applications, datasets for classification may be highly imbalanced due to the rare occurrence of target events such as disease onset. The SMOTE (Synthetic Minority Over-sampling Technique) algorithm has been developed as an effective resampling method for imbalanced data classific...
Autores principales: | Kosolwattana, Tanapol, Liu, Chenang, Hu, Renjie, Han, Shizhong, Chen, Hua, Lin, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131309/ https://www.ncbi.nlm.nih.gov/pubmed/37098549 http://dx.doi.org/10.1186/s13040-023-00330-4 |
Ejemplares similares
-
Research on expansion and classification of imbalanced data based on SMOTE algorithm
por: Wang, Shujuan, et al.
Publicado: (2021) -
SASMOTE: A Self-Attention Oversampling Method for Imbalanced CSI Fingerprints in Indoor Positioning Systems
por: Liu, Ankang, et al.
Publicado: (2022) -
Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset
por: Swana, Elsie Fezeka, et al.
Publicado: (2022) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Effective treatment of imbalanced datasets in health care using modified SMOTE coupled with stacked deep learning algorithms
por: Sowjanya, A. Mary, et al.
Publicado: (2022)