Cargando…
Convolutional neural network optimized by differential evolution for electrocardiogram classification
The Coronavirus disease 2019, or COVID-19, has shifted the medical paradigm from face-to-face to telehealth. Telehealth has become a vital resource to contain the virus spread and ensure the continued care of patients. In terms of preventing cardiovascular diseases, automating electrocardiogram (ECG...
Autores principales: | Chen, Shan Wei, Wang, Shir Li, Qi, XiuZhi, Ng, Theam Foo, Ibrahim, Haidi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131503/ https://www.ncbi.nlm.nih.gov/pubmed/37362685 http://dx.doi.org/10.1007/s11042-023-15407-9 |
Ejemplares similares
-
Towards Automated Optimization of Residual Convolutional Neural Networks for Electrocardiogram Classification
por: Fki, Zeineb, et al.
Publicado: (2023) -
Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification
por: He, Xinxin, et al.
Publicado: (2023) -
Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network
por: Ji, Yinsheng, et al.
Publicado: (2019) -
Robustness of convolutional neural networks to physiological electrocardiogram noise
por: Venton, J., et al.
Publicado: (2021) -
A CNN based Handwritten Numeral Recognition Model for Four Arithmetic Operations
por: ShanWei, Chen, et al.
Publicado: (2021)