Cargando…
Self-supervised learning for medical image classification: a systematic review and implementation guidelines
Advancements in deep learning and computer vision provide promising solutions for medical image analysis, potentially improving healthcare and patient outcomes. However, the prevailing paradigm of training deep learning models requires large quantities of labeled training data, which is both time-co...
Autores principales: | Huang, Shih-Cheng, Pareek, Anuj, Jensen, Malte, Lungren, Matthew P., Yeung, Serena, Chaudhari, Akshay S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131505/ https://www.ncbi.nlm.nih.gov/pubmed/37100953 http://dx.doi.org/10.1038/s41746-023-00811-0 |
Ejemplares similares
-
Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines
por: Huang, Shih-Cheng, et al.
Publicado: (2020) -
Developing medical imaging AI for emerging infectious diseases
por: Huang, Shih-Cheng, et al.
Publicado: (2022) -
Deep learning and its role in COVID-19 medical imaging
por: Desai, Sudhen B., et al.
Publicado: (2020) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
por: Eyuboglu, Sabri, et al.
Publicado: (2021) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020)