Cargando…
mHealth Systems Need a Privacy-by-Design Approach: Commentary on “Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review”
Brauneck and colleagues have combined technical and legal perspectives in their timely and valuable paper “Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review.” Researchers who design mobile health (mHealth) systems must adopt the...
Autor principal: | Tewari, Ambuj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131640/ https://www.ncbi.nlm.nih.gov/pubmed/36995757 http://dx.doi.org/10.2196/46700 |
Ejemplares similares
-
Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review
por: Brauneck, Alissa, et al.
Publicado: (2023) -
Exploring the Relationship Between Privacy and Utility in Mobile Health: Algorithm Development and Validation via Simulations of Federated Learning, Differential Privacy, and External Attacks
por: Shen, Alexander, et al.
Publicado: (2023) -
Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data
por: Liu, Jessica Chia, et al.
Publicado: (2021) -
The law of privacy and the media /
Publicado: (2002) -
Privacy protection for patients with substance use problems
por: Hu, Lianne Lian, et al.
Publicado: (2011)