Cargando…
Correction: Emotional Distress During COVID-19 by Mental Health Conditions and Economic Vulnerability: Retrospective Analysis of Survey-Linked Twitter Data With a Semisupervised Machine Learning Algorithm
Autores principales: | Ueda, Michiko, Watanabe, Kohei, Sueki, Hajime |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131652/ https://www.ncbi.nlm.nih.gov/pubmed/36972537 http://dx.doi.org/10.2196/47549 |
Ejemplares similares
-
Emotional Distress During COVID-19 by Mental Health Conditions and Economic Vulnerability: Retrospective Analysis of Survey-Linked Twitter Data With a Semisupervised Machine Learning Algorithm
por: Ueda, Michiko, et al.
Publicado: (2023) -
Correction: Recommendations From the Twitter Hashtag #DoctorsAreDickheads: Qualitative Analysis
por: Sharma, Anjana Estelle, et al.
Publicado: (2020) -
Correction: COVID-19 Discourse on Twitter in Four Asian Countries: Case Study of Risk Communication
por: Park, Sungkyu, et al.
Publicado: (2021) -
Metadata Correction: “Desensitization to Fear-Inducing COVID-19 Health News on Twitter: Observational Study”
por: Stevens, Hannah R, et al.
Publicado: (2021) -
Correction: Can Tweets Predict Citations? Metrics of Social Impact Based on Twitter and Correlation with Traditional Metrics of Scientific Impact
por: Eysenbach, Gunther
Publicado: (2012)