Cargando…
Development and Validation of a Respiratory-Responsive Vocal Biomarker–Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19
BACKGROUND: Vocal biomarker–based machine learning approaches have shown promising results in the detection of various health conditions, including respiratory diseases, such as asthma. OBJECTIVE: This study aimed to determine whether a respiratory-responsive vocal biomarker (RRVB) model platform in...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131712/ https://www.ncbi.nlm.nih.gov/pubmed/36881540 http://dx.doi.org/10.2196/44410 |
_version_ | 1785031235668541440 |
---|---|
author | Kaur, Savneet Larsen, Erik Harper, James Purandare, Bharat Uluer, Ahmet Hasdianda, Mohammad Adrian Umale, Nikita Arun Killeen, James Castillo, Edward Jariwala, Sunit |
author_facet | Kaur, Savneet Larsen, Erik Harper, James Purandare, Bharat Uluer, Ahmet Hasdianda, Mohammad Adrian Umale, Nikita Arun Killeen, James Castillo, Edward Jariwala, Sunit |
author_sort | Kaur, Savneet |
collection | PubMed |
description | BACKGROUND: Vocal biomarker–based machine learning approaches have shown promising results in the detection of various health conditions, including respiratory diseases, such as asthma. OBJECTIVE: This study aimed to determine whether a respiratory-responsive vocal biomarker (RRVB) model platform initially trained on an asthma and healthy volunteer (HV) data set can differentiate patients with active COVID-19 infection from asymptomatic HVs by assessing its sensitivity, specificity, and odds ratio (OR). METHODS: A logistic regression model using a weighted sum of voice acoustic features was previously trained and validated on a data set of approximately 1700 patients with a confirmed asthma diagnosis and a similar number of healthy controls. The same model has shown generalizability to patients with chronic obstructive pulmonary disease, interstitial lung disease, and cough. In this study, 497 participants (female: n=268, 53.9%; <65 years old: n=467, 94%; Marathi speakers: n=253, 50.9%; English speakers: n=223, 44.9%; Spanish speakers: n=25, 5%) were enrolled across 4 clinical sites in the United States and India and provided voice samples and symptom reports on their personal smartphones. The participants included patients who are symptomatic COVID-19 positive and negative as well as asymptomatic HVs. The RRVB model performance was assessed by comparing it with the clinical diagnosis of COVID-19 confirmed by reverse transcriptase–polymerase chain reaction. RESULTS: The ability of the RRVB model to differentiate patients with respiratory conditions from healthy controls was previously demonstrated on validation data in asthma, chronic obstructive pulmonary disease, interstitial lung disease, and cough, with ORs of 4.3, 9.1, 3.1, and 3.9, respectively. The same RRVB model in this study in COVID-19 performed with a sensitivity of 73.2%, specificity of 62.9%, and OR of 4.64 (P<.001). Patients who experienced respiratory symptoms were detected more frequently than those who did not experience respiratory symptoms and completely asymptomatic patients (sensitivity: 78.4% vs 67.4% vs 68%, respectively). CONCLUSIONS: The RRVB model has shown good generalizability across respiratory conditions, geographies, and languages. Results using data set of patients with COVID-19 demonstrate its meaningful potential to serve as a prescreening tool for identifying individuals at risk for COVID-19 infection in combination with temperature and symptom reports. Although not a COVID-19 test, these results suggest that the RRVB model can encourage targeted testing. Moreover, the generalizability of this model for detecting respiratory symptoms across different linguistic and geographic contexts suggests a potential path for the development and validation of voice-based tools for broader disease surveillance and monitoring applications in the future. |
format | Online Article Text |
id | pubmed-10131712 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-101317122023-04-27 Development and Validation of a Respiratory-Responsive Vocal Biomarker–Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19 Kaur, Savneet Larsen, Erik Harper, James Purandare, Bharat Uluer, Ahmet Hasdianda, Mohammad Adrian Umale, Nikita Arun Killeen, James Castillo, Edward Jariwala, Sunit J Med Internet Res Original Paper BACKGROUND: Vocal biomarker–based machine learning approaches have shown promising results in the detection of various health conditions, including respiratory diseases, such as asthma. OBJECTIVE: This study aimed to determine whether a respiratory-responsive vocal biomarker (RRVB) model platform initially trained on an asthma and healthy volunteer (HV) data set can differentiate patients with active COVID-19 infection from asymptomatic HVs by assessing its sensitivity, specificity, and odds ratio (OR). METHODS: A logistic regression model using a weighted sum of voice acoustic features was previously trained and validated on a data set of approximately 1700 patients with a confirmed asthma diagnosis and a similar number of healthy controls. The same model has shown generalizability to patients with chronic obstructive pulmonary disease, interstitial lung disease, and cough. In this study, 497 participants (female: n=268, 53.9%; <65 years old: n=467, 94%; Marathi speakers: n=253, 50.9%; English speakers: n=223, 44.9%; Spanish speakers: n=25, 5%) were enrolled across 4 clinical sites in the United States and India and provided voice samples and symptom reports on their personal smartphones. The participants included patients who are symptomatic COVID-19 positive and negative as well as asymptomatic HVs. The RRVB model performance was assessed by comparing it with the clinical diagnosis of COVID-19 confirmed by reverse transcriptase–polymerase chain reaction. RESULTS: The ability of the RRVB model to differentiate patients with respiratory conditions from healthy controls was previously demonstrated on validation data in asthma, chronic obstructive pulmonary disease, interstitial lung disease, and cough, with ORs of 4.3, 9.1, 3.1, and 3.9, respectively. The same RRVB model in this study in COVID-19 performed with a sensitivity of 73.2%, specificity of 62.9%, and OR of 4.64 (P<.001). Patients who experienced respiratory symptoms were detected more frequently than those who did not experience respiratory symptoms and completely asymptomatic patients (sensitivity: 78.4% vs 67.4% vs 68%, respectively). CONCLUSIONS: The RRVB model has shown good generalizability across respiratory conditions, geographies, and languages. Results using data set of patients with COVID-19 demonstrate its meaningful potential to serve as a prescreening tool for identifying individuals at risk for COVID-19 infection in combination with temperature and symptom reports. Although not a COVID-19 test, these results suggest that the RRVB model can encourage targeted testing. Moreover, the generalizability of this model for detecting respiratory symptoms across different linguistic and geographic contexts suggests a potential path for the development and validation of voice-based tools for broader disease surveillance and monitoring applications in the future. JMIR Publications 2023-04-14 /pmc/articles/PMC10131712/ /pubmed/36881540 http://dx.doi.org/10.2196/44410 Text en ©Savneet Kaur, Erik Larsen, James Harper, Bharat Purandare, Ahmet Uluer, Mohammad Adrian Hasdianda, Nikita Arun Umale, James Killeen, Edward Castillo, Sunit Jariwala. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 14.04.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Kaur, Savneet Larsen, Erik Harper, James Purandare, Bharat Uluer, Ahmet Hasdianda, Mohammad Adrian Umale, Nikita Arun Killeen, James Castillo, Edward Jariwala, Sunit Development and Validation of a Respiratory-Responsive Vocal Biomarker–Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19 |
title | Development and Validation of a Respiratory-Responsive Vocal Biomarker–Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19 |
title_full | Development and Validation of a Respiratory-Responsive Vocal Biomarker–Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19 |
title_fullStr | Development and Validation of a Respiratory-Responsive Vocal Biomarker–Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19 |
title_full_unstemmed | Development and Validation of a Respiratory-Responsive Vocal Biomarker–Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19 |
title_short | Development and Validation of a Respiratory-Responsive Vocal Biomarker–Based Tool for Generalizable Detection of Respiratory Impairment: Independent Case-Control Studies in Multiple Respiratory Conditions Including Asthma, Chronic Obstructive Pulmonary Disease, and COVID-19 |
title_sort | development and validation of a respiratory-responsive vocal biomarker–based tool for generalizable detection of respiratory impairment: independent case-control studies in multiple respiratory conditions including asthma, chronic obstructive pulmonary disease, and covid-19 |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131712/ https://www.ncbi.nlm.nih.gov/pubmed/36881540 http://dx.doi.org/10.2196/44410 |
work_keys_str_mv | AT kaursavneet developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT larsenerik developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT harperjames developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT purandarebharat developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT uluerahmet developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT hasdiandamohammadadrian developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT umalenikitaarun developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT killeenjames developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT castilloedward developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 AT jariwalasunit developmentandvalidationofarespiratoryresponsivevocalbiomarkerbasedtoolforgeneralizabledetectionofrespiratoryimpairmentindependentcasecontrolstudiesinmultiplerespiratoryconditionsincludingasthmachronicobstructivepulmonarydiseaseandcovid19 |