Cargando…
Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review
BACKGROUND: The collection, storage, and analysis of large data sets are relevant in many sectors. Especially in the medical field, the processing of patient data promises great progress in personalized health care. However, it is strictly regulated, such as by the General Data Protection Regulation...
Autores principales: | Brauneck, Alissa, Schmalhorst, Louisa, Kazemi Majdabadi, Mohammad Mahdi, Bakhtiari, Mohammad, Völker, Uwe, Baumbach, Jan, Baumbach, Linda, Buchholtz, Gabriele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131784/ https://www.ncbi.nlm.nih.gov/pubmed/36995759 http://dx.doi.org/10.2196/41588 |
Ejemplares similares
-
Privacy-aware multi-institutional time-to-event studies
por: Späth, Julian, et al.
Publicado: (2022) -
Flimma: a federated and privacy-aware tool for differential gene expression analysis
por: Zolotareva, Olga, et al.
Publicado: (2021) -
mHealth Systems Need a Privacy-by-Design Approach: Commentary on “Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review”
por: Tewari, Ambuj
Publicado: (2023) -
The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach
por: Matschinske, Julian, et al.
Publicado: (2023) -
The law of privacy and the media /
Publicado: (2002)