Cargando…

Fractional Dynamics Foster Deep Learning of COPD Stage Prediction (Adv. Sci. 12/2023)

Deep Learning Analyzing physiological signals with fractional dynamics reduces the learning complexity for automated diagnosis with deep learning. In article number 2203485, Mihai Udrescu, Paul Bogdan, and co‐workers show that fractional‐order dynamical modeling can extract distinguishing signatures...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Chenzhong, Udrescu, Mihai, Gupta, Gaurav, Cheng, Mingxi, Lihu, Andrei, Udrescu, Lucretia, Bogdan, Paul, Mannino, David M., Mihaicuta, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131786/
http://dx.doi.org/10.1002/advs.202370071
_version_ 1785031253064417280
author Yin, Chenzhong
Udrescu, Mihai
Gupta, Gaurav
Cheng, Mingxi
Lihu, Andrei
Udrescu, Lucretia
Bogdan, Paul
Mannino, David M.
Mihaicuta, Stefan
author_facet Yin, Chenzhong
Udrescu, Mihai
Gupta, Gaurav
Cheng, Mingxi
Lihu, Andrei
Udrescu, Lucretia
Bogdan, Paul
Mannino, David M.
Mihaicuta, Stefan
author_sort Yin, Chenzhong
collection PubMed
description Deep Learning Analyzing physiological signals with fractional dynamics reduces the learning complexity for automated diagnosis with deep learning. In article number 2203485, Mihai Udrescu, Paul Bogdan, and co‐workers show that fractional‐order dynamical modeling can extract distinguishing signatures from the physiological signals recorded in COPD patients, then use fractional signatures to develop and train a deep neural network that accurately predicts COPD stages—a robust alternative to spirometry. [Image: see text]
format Online
Article
Text
id pubmed-10131786
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101317862023-04-27 Fractional Dynamics Foster Deep Learning of COPD Stage Prediction (Adv. Sci. 12/2023) Yin, Chenzhong Udrescu, Mihai Gupta, Gaurav Cheng, Mingxi Lihu, Andrei Udrescu, Lucretia Bogdan, Paul Mannino, David M. Mihaicuta, Stefan Adv Sci (Weinh) Frontispiece Deep Learning Analyzing physiological signals with fractional dynamics reduces the learning complexity for automated diagnosis with deep learning. In article number 2203485, Mihai Udrescu, Paul Bogdan, and co‐workers show that fractional‐order dynamical modeling can extract distinguishing signatures from the physiological signals recorded in COPD patients, then use fractional signatures to develop and train a deep neural network that accurately predicts COPD stages—a robust alternative to spirometry. [Image: see text] John Wiley and Sons Inc. 2023-04-26 /pmc/articles/PMC10131786/ http://dx.doi.org/10.1002/advs.202370071 Text en © 2023 Wiley‐VCH GmbH https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Frontispiece
Yin, Chenzhong
Udrescu, Mihai
Gupta, Gaurav
Cheng, Mingxi
Lihu, Andrei
Udrescu, Lucretia
Bogdan, Paul
Mannino, David M.
Mihaicuta, Stefan
Fractional Dynamics Foster Deep Learning of COPD Stage Prediction (Adv. Sci. 12/2023)
title Fractional Dynamics Foster Deep Learning of COPD Stage Prediction (Adv. Sci. 12/2023)
title_full Fractional Dynamics Foster Deep Learning of COPD Stage Prediction (Adv. Sci. 12/2023)
title_fullStr Fractional Dynamics Foster Deep Learning of COPD Stage Prediction (Adv. Sci. 12/2023)
title_full_unstemmed Fractional Dynamics Foster Deep Learning of COPD Stage Prediction (Adv. Sci. 12/2023)
title_short Fractional Dynamics Foster Deep Learning of COPD Stage Prediction (Adv. Sci. 12/2023)
title_sort fractional dynamics foster deep learning of copd stage prediction (adv. sci. 12/2023)
topic Frontispiece
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131786/
http://dx.doi.org/10.1002/advs.202370071
work_keys_str_mv AT yinchenzhong fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023
AT udrescumihai fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023
AT guptagaurav fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023
AT chengmingxi fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023
AT lihuandrei fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023
AT udresculucretia fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023
AT bogdanpaul fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023
AT manninodavidm fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023
AT mihaicutastefan fractionaldynamicsfosterdeeplearningofcopdstagepredictionadvsci122023