Cargando…

Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode

Li metal anode is considered as one of the most desirable candidates for next‐generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bring...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yifan, Li, Zichuang, Wang, Zongpeng, Wang, Xunlu, Chen, Wei, Wang, Jiacheng, Zhong, Wenwu, Ma, Ruguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131806/
https://www.ncbi.nlm.nih.gov/pubmed/36806693
http://dx.doi.org/10.1002/advs.202206995
_version_ 1785031257494650880
author Hu, Yifan
Li, Zichuang
Wang, Zongpeng
Wang, Xunlu
Chen, Wei
Wang, Jiacheng
Zhong, Wenwu
Ma, Ruguang
author_facet Hu, Yifan
Li, Zichuang
Wang, Zongpeng
Wang, Xunlu
Chen, Wei
Wang, Jiacheng
Zhong, Wenwu
Ma, Ruguang
author_sort Hu, Yifan
collection PubMed
description Li metal anode is considered as one of the most desirable candidates for next‐generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bringing safety concerns. Here, an efficient strategy is proposed to stabilize Li metal anode by digesting dendrites sprout using a 3D flexible superlithiophilic membrane consisting of poly(vinylidene fluoride) (PVDF) and ZnCl(2) composite nanofibers (PZEM) as a protective layer. Both the experimental studies and theoretical calculations show the origin of superlithiophilicity ascribed to a strong interaction between ZnCl(2) and PVDF to form the Zn—F bonds. The multifield physics calculation implies effective removal of local dendrite hotspots by PZEM via a more homogeneous Li(+) flux. The PZEM‐covered Li anode (PZEM@Li) exhibits superior Li deposition/stripping performance in a symmetric cell over 1100 cycles at a high current density of 5 mA cm(−2). When paired with LiFePO(4) (LFP), PZEM@Li|LFP full cell remains stable over 1000 cycles at 2 C with a degradation rate of 0.0083% per cycle. This work offers a new route for efficient protection of Li metal anode for practical applications.
format Online
Article
Text
id pubmed-10131806
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101318062023-04-27 Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode Hu, Yifan Li, Zichuang Wang, Zongpeng Wang, Xunlu Chen, Wei Wang, Jiacheng Zhong, Wenwu Ma, Ruguang Adv Sci (Weinh) Research Articles Li metal anode is considered as one of the most desirable candidates for next‐generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bringing safety concerns. Here, an efficient strategy is proposed to stabilize Li metal anode by digesting dendrites sprout using a 3D flexible superlithiophilic membrane consisting of poly(vinylidene fluoride) (PVDF) and ZnCl(2) composite nanofibers (PZEM) as a protective layer. Both the experimental studies and theoretical calculations show the origin of superlithiophilicity ascribed to a strong interaction between ZnCl(2) and PVDF to form the Zn—F bonds. The multifield physics calculation implies effective removal of local dendrite hotspots by PZEM via a more homogeneous Li(+) flux. The PZEM‐covered Li anode (PZEM@Li) exhibits superior Li deposition/stripping performance in a symmetric cell over 1100 cycles at a high current density of 5 mA cm(−2). When paired with LiFePO(4) (LFP), PZEM@Li|LFP full cell remains stable over 1000 cycles at 2 C with a degradation rate of 0.0083% per cycle. This work offers a new route for efficient protection of Li metal anode for practical applications. John Wiley and Sons Inc. 2023-02-17 /pmc/articles/PMC10131806/ /pubmed/36806693 http://dx.doi.org/10.1002/advs.202206995 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Hu, Yifan
Li, Zichuang
Wang, Zongpeng
Wang, Xunlu
Chen, Wei
Wang, Jiacheng
Zhong, Wenwu
Ma, Ruguang
Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode
title Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode
title_full Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode
title_fullStr Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode
title_full_unstemmed Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode
title_short Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode
title_sort suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131806/
https://www.ncbi.nlm.nih.gov/pubmed/36806693
http://dx.doi.org/10.1002/advs.202206995
work_keys_str_mv AT huyifan suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode
AT lizichuang suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode
AT wangzongpeng suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode
AT wangxunlu suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode
AT chenwei suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode
AT wangjiacheng suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode
AT zhongwenwu suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode
AT maruguang suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode