Cargando…
Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode
Li metal anode is considered as one of the most desirable candidates for next‐generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bring...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131806/ https://www.ncbi.nlm.nih.gov/pubmed/36806693 http://dx.doi.org/10.1002/advs.202206995 |
_version_ | 1785031257494650880 |
---|---|
author | Hu, Yifan Li, Zichuang Wang, Zongpeng Wang, Xunlu Chen, Wei Wang, Jiacheng Zhong, Wenwu Ma, Ruguang |
author_facet | Hu, Yifan Li, Zichuang Wang, Zongpeng Wang, Xunlu Chen, Wei Wang, Jiacheng Zhong, Wenwu Ma, Ruguang |
author_sort | Hu, Yifan |
collection | PubMed |
description | Li metal anode is considered as one of the most desirable candidates for next‐generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bringing safety concerns. Here, an efficient strategy is proposed to stabilize Li metal anode by digesting dendrites sprout using a 3D flexible superlithiophilic membrane consisting of poly(vinylidene fluoride) (PVDF) and ZnCl(2) composite nanofibers (PZEM) as a protective layer. Both the experimental studies and theoretical calculations show the origin of superlithiophilicity ascribed to a strong interaction between ZnCl(2) and PVDF to form the Zn—F bonds. The multifield physics calculation implies effective removal of local dendrite hotspots by PZEM via a more homogeneous Li(+) flux. The PZEM‐covered Li anode (PZEM@Li) exhibits superior Li deposition/stripping performance in a symmetric cell over 1100 cycles at a high current density of 5 mA cm(−2). When paired with LiFePO(4) (LFP), PZEM@Li|LFP full cell remains stable over 1000 cycles at 2 C with a degradation rate of 0.0083% per cycle. This work offers a new route for efficient protection of Li metal anode for practical applications. |
format | Online Article Text |
id | pubmed-10131806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101318062023-04-27 Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode Hu, Yifan Li, Zichuang Wang, Zongpeng Wang, Xunlu Chen, Wei Wang, Jiacheng Zhong, Wenwu Ma, Ruguang Adv Sci (Weinh) Research Articles Li metal anode is considered as one of the most desirable candidates for next‐generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bringing safety concerns. Here, an efficient strategy is proposed to stabilize Li metal anode by digesting dendrites sprout using a 3D flexible superlithiophilic membrane consisting of poly(vinylidene fluoride) (PVDF) and ZnCl(2) composite nanofibers (PZEM) as a protective layer. Both the experimental studies and theoretical calculations show the origin of superlithiophilicity ascribed to a strong interaction between ZnCl(2) and PVDF to form the Zn—F bonds. The multifield physics calculation implies effective removal of local dendrite hotspots by PZEM via a more homogeneous Li(+) flux. The PZEM‐covered Li anode (PZEM@Li) exhibits superior Li deposition/stripping performance in a symmetric cell over 1100 cycles at a high current density of 5 mA cm(−2). When paired with LiFePO(4) (LFP), PZEM@Li|LFP full cell remains stable over 1000 cycles at 2 C with a degradation rate of 0.0083% per cycle. This work offers a new route for efficient protection of Li metal anode for practical applications. John Wiley and Sons Inc. 2023-02-17 /pmc/articles/PMC10131806/ /pubmed/36806693 http://dx.doi.org/10.1002/advs.202206995 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Hu, Yifan Li, Zichuang Wang, Zongpeng Wang, Xunlu Chen, Wei Wang, Jiacheng Zhong, Wenwu Ma, Ruguang Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode |
title | Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode |
title_full | Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode |
title_fullStr | Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode |
title_full_unstemmed | Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode |
title_short | Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode |
title_sort | suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131806/ https://www.ncbi.nlm.nih.gov/pubmed/36806693 http://dx.doi.org/10.1002/advs.202206995 |
work_keys_str_mv | AT huyifan suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode AT lizichuang suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode AT wangzongpeng suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode AT wangxunlu suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode AT chenwei suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode AT wangjiacheng suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode AT zhongwenwu suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode AT maruguang suppressinglocaldendritehotspotsviacurrentdensityredistributionusingasuperlithiophilicmembraneforstablelithiummetalanode |