Cargando…

Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions

Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID‐19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF‐A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases...

Descripción completa

Detalles Bibliográficos
Autores principales: Nawaz, Muhammad, Heydarkhan‐Hagvall, Sepideh, Tangruksa, Benyapa, González‐King Garibotti, Hernán, Jing, Yujia, Maugeri, Marco, Kohl, Franziska, Hultin, Leif, Reyahi, Azadeh, Camponeschi, Alessandro, Kull, Bengt, Christoffersson, Jonas, Grimsholm, Ola, Jennbacken, Karin, Sundqvist, Martina, Wiseman, John, Bidar, Abdel Wahad, Lindfors, Lennart, Synnergren, Jane, Valadi, Hadi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131815/
https://www.ncbi.nlm.nih.gov/pubmed/36806740
http://dx.doi.org/10.1002/advs.202206187
_version_ 1785031259663106048
author Nawaz, Muhammad
Heydarkhan‐Hagvall, Sepideh
Tangruksa, Benyapa
González‐King Garibotti, Hernán
Jing, Yujia
Maugeri, Marco
Kohl, Franziska
Hultin, Leif
Reyahi, Azadeh
Camponeschi, Alessandro
Kull, Bengt
Christoffersson, Jonas
Grimsholm, Ola
Jennbacken, Karin
Sundqvist, Martina
Wiseman, John
Bidar, Abdel Wahad
Lindfors, Lennart
Synnergren, Jane
Valadi, Hadi
author_facet Nawaz, Muhammad
Heydarkhan‐Hagvall, Sepideh
Tangruksa, Benyapa
González‐King Garibotti, Hernán
Jing, Yujia
Maugeri, Marco
Kohl, Franziska
Hultin, Leif
Reyahi, Azadeh
Camponeschi, Alessandro
Kull, Bengt
Christoffersson, Jonas
Grimsholm, Ola
Jennbacken, Karin
Sundqvist, Martina
Wiseman, John
Bidar, Abdel Wahad
Lindfors, Lennart
Synnergren, Jane
Valadi, Hadi
author_sort Nawaz, Muhammad
collection PubMed
description Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID‐19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF‐A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases. Here, the authors deliver VEGF‐A mRNA via LNPs and study stoichiometric quantification of their uptake kinetics and how the transport of exogenous LNP‐mRNAs between cells is functionally extended by cells’ own vehicles called extracellular vesicles (EVs). The results show that cellular uptake of LNPs and their mRNA molecules occurs quickly, and that the translation of exogenously delivered mRNA begins immediately. Following the VEGF‐A mRNA delivery to cells via LNPs, a fraction of internalized VEGF‐A mRNA is secreted via EVs. The overexpressed VEGF‐A mRNA is detected in EVs secreted from three different cell types. Additionally, RNA‐Seq analysis reveals that as cells’ response to LNP‐VEGF‐A mRNA treatment, several overexpressed proangiogenic transcripts are packaged into EVs. EVs are further deployed to deliver VEGF‐A mRNA in vitro and in vivo. Upon equal amount of VEGF‐A mRNA delivery via three EV types or LNPs in vitro, EVs from cardiac progenitor cells are the most efficient in promoting angiogenesis per amount of VEGF‐A protein produced. Intravenous administration of luciferase mRNA shows that EVs could distribute translatable mRNA to different organs with the highest amounts of luciferase detected in the liver. Direct injections of VEGF‐A mRNA (via EVs or LNPs) into mice heart result in locally produced VEGF‐A protein without spillover to liver and circulation. In addition, EVs from cardiac progenitor cells cause minimal production of inflammatory cytokines in cardiac tissue compared with all other treatment types. Collectively, the data demonstrate that LNPs transform EVs as functional extensions to distribute therapeutic mRNA between cells, where EVs deliver this mRNA differently than LNPs.
format Online
Article
Text
id pubmed-10131815
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101318152023-04-27 Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions Nawaz, Muhammad Heydarkhan‐Hagvall, Sepideh Tangruksa, Benyapa González‐King Garibotti, Hernán Jing, Yujia Maugeri, Marco Kohl, Franziska Hultin, Leif Reyahi, Azadeh Camponeschi, Alessandro Kull, Bengt Christoffersson, Jonas Grimsholm, Ola Jennbacken, Karin Sundqvist, Martina Wiseman, John Bidar, Abdel Wahad Lindfors, Lennart Synnergren, Jane Valadi, Hadi Adv Sci (Weinh) Research Articles Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID‐19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF‐A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases. Here, the authors deliver VEGF‐A mRNA via LNPs and study stoichiometric quantification of their uptake kinetics and how the transport of exogenous LNP‐mRNAs between cells is functionally extended by cells’ own vehicles called extracellular vesicles (EVs). The results show that cellular uptake of LNPs and their mRNA molecules occurs quickly, and that the translation of exogenously delivered mRNA begins immediately. Following the VEGF‐A mRNA delivery to cells via LNPs, a fraction of internalized VEGF‐A mRNA is secreted via EVs. The overexpressed VEGF‐A mRNA is detected in EVs secreted from three different cell types. Additionally, RNA‐Seq analysis reveals that as cells’ response to LNP‐VEGF‐A mRNA treatment, several overexpressed proangiogenic transcripts are packaged into EVs. EVs are further deployed to deliver VEGF‐A mRNA in vitro and in vivo. Upon equal amount of VEGF‐A mRNA delivery via three EV types or LNPs in vitro, EVs from cardiac progenitor cells are the most efficient in promoting angiogenesis per amount of VEGF‐A protein produced. Intravenous administration of luciferase mRNA shows that EVs could distribute translatable mRNA to different organs with the highest amounts of luciferase detected in the liver. Direct injections of VEGF‐A mRNA (via EVs or LNPs) into mice heart result in locally produced VEGF‐A protein without spillover to liver and circulation. In addition, EVs from cardiac progenitor cells cause minimal production of inflammatory cytokines in cardiac tissue compared with all other treatment types. Collectively, the data demonstrate that LNPs transform EVs as functional extensions to distribute therapeutic mRNA between cells, where EVs deliver this mRNA differently than LNPs. John Wiley and Sons Inc. 2023-02-19 /pmc/articles/PMC10131815/ /pubmed/36806740 http://dx.doi.org/10.1002/advs.202206187 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Nawaz, Muhammad
Heydarkhan‐Hagvall, Sepideh
Tangruksa, Benyapa
González‐King Garibotti, Hernán
Jing, Yujia
Maugeri, Marco
Kohl, Franziska
Hultin, Leif
Reyahi, Azadeh
Camponeschi, Alessandro
Kull, Bengt
Christoffersson, Jonas
Grimsholm, Ola
Jennbacken, Karin
Sundqvist, Martina
Wiseman, John
Bidar, Abdel Wahad
Lindfors, Lennart
Synnergren, Jane
Valadi, Hadi
Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions
title Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions
title_full Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions
title_fullStr Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions
title_full_unstemmed Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions
title_short Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions
title_sort lipid nanoparticles deliver the therapeutic vegfa mrna in vitro and in vivo and transform extracellular vesicles for their functional extensions
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131815/
https://www.ncbi.nlm.nih.gov/pubmed/36806740
http://dx.doi.org/10.1002/advs.202206187
work_keys_str_mv AT nawazmuhammad lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT heydarkhanhagvallsepideh lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT tangruksabenyapa lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT gonzalezkinggaribottihernan lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT jingyujia lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT maugerimarco lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT kohlfranziska lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT hultinleif lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT reyahiazadeh lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT camponeschialessandro lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT kullbengt lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT christofferssonjonas lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT grimsholmola lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT jennbackenkarin lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT sundqvistmartina lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT wisemanjohn lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT bidarabdelwahad lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT lindforslennart lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT synnergrenjane lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions
AT valadihadi lipidnanoparticlesdeliverthetherapeuticvegfamrnainvitroandinvivoandtransformextracellularvesiclesfortheirfunctionalextensions