Cargando…
The Early Detection of Fraudulent COVID-19 Products From Twitter Chatter: Data Set and Baseline Approach Using Anomaly Detection
BACKGROUND: Social media has served as a lucrative platform for spreading misinformation and for promoting fraudulent products for the treatment, testing, and prevention of COVID-19. This has resulted in the issuance of many warning letters by the US Food and Drug Administration (FDA). While social...
Autores principales: | Sarker, Abeed, Lakamana, Sahithi, Liao, Ruqi, Abbas, Aamir, Yang, Yuan-Chi, Al-Garadi, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131818/ https://www.ncbi.nlm.nih.gov/pubmed/37113382 http://dx.doi.org/10.2196/43694 |
Ejemplares similares
-
Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid
por: Yang, Yuan-Chi, et al.
Publicado: (2021) -
A framework for multi-faceted content analysis of social media chatter regarding non-medical use of prescription medications
por: Raza, Shaina, et al.
Publicado: (2023) -
Self-reported COVID-19 symptoms on Twitter: an analysis and a research resource
por: Sarker, Abeed, et al.
Publicado: (2020) -
Natural language model for automatic identification of Intimate Partner Violence reports from Twitter
por: Al-Garadi, Mohammed Ali, et al.
Publicado: (2022) -
An aspect-level sentiment analysis dataset for therapies on Twitter
por: Guo, Yuting, et al.
Publicado: (2023)