Cargando…
Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices
Spin current, converted from charge current via spin Hall or Rashba effects, can transfer its angular momentum to local moments in a ferromagnetic layer. In this regard, the high charge‐to‐spin conversion efficiency is required for magnetization manipulation for developing future memory or logic dev...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131871/ https://www.ncbi.nlm.nih.gov/pubmed/36808490 http://dx.doi.org/10.1002/advs.202206800 |
_version_ | 1785031273224339456 |
---|---|
author | Ham, Woo Seung Ho, Thi Huynh Shiota, Yoichi Iino, Tatsuya Ando, Fuyuki Ikebuchi, Tetsuya Kotani, Yoshinori Nakamura, Tetsuya Kan, Daisuke Shimakawa, Yuichi Moriyma, Takahiro Im, Eunji Lee, Nyun‐Jong Kim, Kyoung‐Whan Hong, Soon Cheol Rhim, Sonny H. Ono, Teruo Kim, Sanghoon |
author_facet | Ham, Woo Seung Ho, Thi Huynh Shiota, Yoichi Iino, Tatsuya Ando, Fuyuki Ikebuchi, Tetsuya Kotani, Yoshinori Nakamura, Tetsuya Kan, Daisuke Shimakawa, Yuichi Moriyma, Takahiro Im, Eunji Lee, Nyun‐Jong Kim, Kyoung‐Whan Hong, Soon Cheol Rhim, Sonny H. Ono, Teruo Kim, Sanghoon |
author_sort | Ham, Woo Seung |
collection | PubMed |
description | Spin current, converted from charge current via spin Hall or Rashba effects, can transfer its angular momentum to local moments in a ferromagnetic layer. In this regard, the high charge‐to‐spin conversion efficiency is required for magnetization manipulation for developing future memory or logic devices including magnetic random‐access memory. Here, the bulk Rashba‐type charge‐to‐spin conversion is demonstrated in an artificial superlattice without centrosymmetry. The charge‐to‐spin conversion in [Pt/Co/W] superlattice with sub‐nm scale thickness shows strong W thickness dependence. When the W thickness becomes 0.6 nm, the observed field‐like torque efficiency is about 0.6, which is an order larger than other metallic heterostructures. First‐principles calculation suggests that such large field‐like torque arises from bulk‐type Rashba effect due to the vertically broken inversion symmetry inherent from W layers. The result implies that the spin splitting in a band of such an ABC‐type artificial SL can be an additional degree of freedom for the large charge‐to‐spin conversion. |
format | Online Article Text |
id | pubmed-10131871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101318712023-04-27 Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices Ham, Woo Seung Ho, Thi Huynh Shiota, Yoichi Iino, Tatsuya Ando, Fuyuki Ikebuchi, Tetsuya Kotani, Yoshinori Nakamura, Tetsuya Kan, Daisuke Shimakawa, Yuichi Moriyma, Takahiro Im, Eunji Lee, Nyun‐Jong Kim, Kyoung‐Whan Hong, Soon Cheol Rhim, Sonny H. Ono, Teruo Kim, Sanghoon Adv Sci (Weinh) Research Articles Spin current, converted from charge current via spin Hall or Rashba effects, can transfer its angular momentum to local moments in a ferromagnetic layer. In this regard, the high charge‐to‐spin conversion efficiency is required for magnetization manipulation for developing future memory or logic devices including magnetic random‐access memory. Here, the bulk Rashba‐type charge‐to‐spin conversion is demonstrated in an artificial superlattice without centrosymmetry. The charge‐to‐spin conversion in [Pt/Co/W] superlattice with sub‐nm scale thickness shows strong W thickness dependence. When the W thickness becomes 0.6 nm, the observed field‐like torque efficiency is about 0.6, which is an order larger than other metallic heterostructures. First‐principles calculation suggests that such large field‐like torque arises from bulk‐type Rashba effect due to the vertically broken inversion symmetry inherent from W layers. The result implies that the spin splitting in a band of such an ABC‐type artificial SL can be an additional degree of freedom for the large charge‐to‐spin conversion. John Wiley and Sons Inc. 2023-02-19 /pmc/articles/PMC10131871/ /pubmed/36808490 http://dx.doi.org/10.1002/advs.202206800 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Ham, Woo Seung Ho, Thi Huynh Shiota, Yoichi Iino, Tatsuya Ando, Fuyuki Ikebuchi, Tetsuya Kotani, Yoshinori Nakamura, Tetsuya Kan, Daisuke Shimakawa, Yuichi Moriyma, Takahiro Im, Eunji Lee, Nyun‐Jong Kim, Kyoung‐Whan Hong, Soon Cheol Rhim, Sonny H. Ono, Teruo Kim, Sanghoon Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices |
title | Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices |
title_full | Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices |
title_fullStr | Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices |
title_full_unstemmed | Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices |
title_short | Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices |
title_sort | bulk rashba‐type spin splitting in non‐centrosymmetric artificial superlattices |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131871/ https://www.ncbi.nlm.nih.gov/pubmed/36808490 http://dx.doi.org/10.1002/advs.202206800 |
work_keys_str_mv | AT hamwooseung bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT hothihuynh bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT shiotayoichi bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT iinotatsuya bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT andofuyuki bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT ikebuchitetsuya bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT kotaniyoshinori bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT nakamuratetsuya bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT kandaisuke bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT shimakawayuichi bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT moriymatakahiro bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT imeunji bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT leenyunjong bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT kimkyoungwhan bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT hongsooncheol bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT rhimsonnyh bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT onoteruo bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices AT kimsanghoon bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices |