Cargando…

Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices

Spin current, converted from charge current via spin Hall or Rashba effects, can transfer its angular momentum to local moments in a ferromagnetic layer. In this regard, the high charge‐to‐spin conversion efficiency is required for magnetization manipulation for developing future memory or logic dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Ham, Woo Seung, Ho, Thi Huynh, Shiota, Yoichi, Iino, Tatsuya, Ando, Fuyuki, Ikebuchi, Tetsuya, Kotani, Yoshinori, Nakamura, Tetsuya, Kan, Daisuke, Shimakawa, Yuichi, Moriyma, Takahiro, Im, Eunji, Lee, Nyun‐Jong, Kim, Kyoung‐Whan, Hong, Soon Cheol, Rhim, Sonny H., Ono, Teruo, Kim, Sanghoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131871/
https://www.ncbi.nlm.nih.gov/pubmed/36808490
http://dx.doi.org/10.1002/advs.202206800
_version_ 1785031273224339456
author Ham, Woo Seung
Ho, Thi Huynh
Shiota, Yoichi
Iino, Tatsuya
Ando, Fuyuki
Ikebuchi, Tetsuya
Kotani, Yoshinori
Nakamura, Tetsuya
Kan, Daisuke
Shimakawa, Yuichi
Moriyma, Takahiro
Im, Eunji
Lee, Nyun‐Jong
Kim, Kyoung‐Whan
Hong, Soon Cheol
Rhim, Sonny H.
Ono, Teruo
Kim, Sanghoon
author_facet Ham, Woo Seung
Ho, Thi Huynh
Shiota, Yoichi
Iino, Tatsuya
Ando, Fuyuki
Ikebuchi, Tetsuya
Kotani, Yoshinori
Nakamura, Tetsuya
Kan, Daisuke
Shimakawa, Yuichi
Moriyma, Takahiro
Im, Eunji
Lee, Nyun‐Jong
Kim, Kyoung‐Whan
Hong, Soon Cheol
Rhim, Sonny H.
Ono, Teruo
Kim, Sanghoon
author_sort Ham, Woo Seung
collection PubMed
description Spin current, converted from charge current via spin Hall or Rashba effects, can transfer its angular momentum to local moments in a ferromagnetic layer. In this regard, the high charge‐to‐spin conversion efficiency is required for magnetization manipulation for developing future memory or logic devices including magnetic random‐access memory. Here, the bulk Rashba‐type charge‐to‐spin conversion is demonstrated in an artificial superlattice without centrosymmetry. The charge‐to‐spin conversion in [Pt/Co/W] superlattice with sub‐nm scale thickness shows strong W thickness dependence. When the W thickness becomes 0.6 nm, the observed field‐like torque efficiency is about 0.6, which is an order larger than other metallic heterostructures. First‐principles calculation suggests that such large field‐like torque arises from bulk‐type Rashba effect due to the vertically broken inversion symmetry inherent from W layers. The result implies that the spin splitting in a band of such an ABC‐type artificial SL can be an additional degree of freedom for the large charge‐to‐spin conversion.
format Online
Article
Text
id pubmed-10131871
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101318712023-04-27 Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices Ham, Woo Seung Ho, Thi Huynh Shiota, Yoichi Iino, Tatsuya Ando, Fuyuki Ikebuchi, Tetsuya Kotani, Yoshinori Nakamura, Tetsuya Kan, Daisuke Shimakawa, Yuichi Moriyma, Takahiro Im, Eunji Lee, Nyun‐Jong Kim, Kyoung‐Whan Hong, Soon Cheol Rhim, Sonny H. Ono, Teruo Kim, Sanghoon Adv Sci (Weinh) Research Articles Spin current, converted from charge current via spin Hall or Rashba effects, can transfer its angular momentum to local moments in a ferromagnetic layer. In this regard, the high charge‐to‐spin conversion efficiency is required for magnetization manipulation for developing future memory or logic devices including magnetic random‐access memory. Here, the bulk Rashba‐type charge‐to‐spin conversion is demonstrated in an artificial superlattice without centrosymmetry. The charge‐to‐spin conversion in [Pt/Co/W] superlattice with sub‐nm scale thickness shows strong W thickness dependence. When the W thickness becomes 0.6 nm, the observed field‐like torque efficiency is about 0.6, which is an order larger than other metallic heterostructures. First‐principles calculation suggests that such large field‐like torque arises from bulk‐type Rashba effect due to the vertically broken inversion symmetry inherent from W layers. The result implies that the spin splitting in a band of such an ABC‐type artificial SL can be an additional degree of freedom for the large charge‐to‐spin conversion. John Wiley and Sons Inc. 2023-02-19 /pmc/articles/PMC10131871/ /pubmed/36808490 http://dx.doi.org/10.1002/advs.202206800 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Ham, Woo Seung
Ho, Thi Huynh
Shiota, Yoichi
Iino, Tatsuya
Ando, Fuyuki
Ikebuchi, Tetsuya
Kotani, Yoshinori
Nakamura, Tetsuya
Kan, Daisuke
Shimakawa, Yuichi
Moriyma, Takahiro
Im, Eunji
Lee, Nyun‐Jong
Kim, Kyoung‐Whan
Hong, Soon Cheol
Rhim, Sonny H.
Ono, Teruo
Kim, Sanghoon
Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices
title Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices
title_full Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices
title_fullStr Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices
title_full_unstemmed Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices
title_short Bulk Rashba‐Type Spin Splitting in Non‐Centrosymmetric Artificial Superlattices
title_sort bulk rashba‐type spin splitting in non‐centrosymmetric artificial superlattices
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131871/
https://www.ncbi.nlm.nih.gov/pubmed/36808490
http://dx.doi.org/10.1002/advs.202206800
work_keys_str_mv AT hamwooseung bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT hothihuynh bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT shiotayoichi bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT iinotatsuya bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT andofuyuki bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT ikebuchitetsuya bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT kotaniyoshinori bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT nakamuratetsuya bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT kandaisuke bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT shimakawayuichi bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT moriymatakahiro bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT imeunji bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT leenyunjong bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT kimkyoungwhan bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT hongsooncheol bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT rhimsonnyh bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT onoteruo bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices
AT kimsanghoon bulkrashbatypespinsplittinginnoncentrosymmetricartificialsuperlattices