Cargando…

Glutamine Metabolism Underlies the Functional Similarity of T Cells between Nile Tilapia and Tetrapod

As the lowest organisms possessing T cells, fish are instrumental for understanding T cell evolution and immune defense in early vertebrates. This study established in Nile tilapia models suggests that T cells play a critical role in resisting Edwardsiella piscicida infection via cytotoxicity and ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Kang, Wei, Xiumei, Jiao, Xinying, Deng, Wenhai, Li, Jiaqi, Liang, Wei, Zhang, Yu, Yang, Jialong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131875/
https://www.ncbi.nlm.nih.gov/pubmed/36890649
http://dx.doi.org/10.1002/advs.202201164
Descripción
Sumario:As the lowest organisms possessing T cells, fish are instrumental for understanding T cell evolution and immune defense in early vertebrates. This study established in Nile tilapia models suggests that T cells play a critical role in resisting Edwardsiella piscicida infection via cytotoxicity and are essential for IgM(+) B cell response. CD3 and CD28 monoclonal antibody crosslinking reveals that full activation of tilapia T cells requires the first and secondary signals, while Ca(2+)–NFAT, MAPK/ERK, NF‐κB, and mTORC1 pathways and IgM(+) B cells collectively regulate T cell activation. Thus, despite the large evolutionary distance, tilapia and mammals such as mice and humans exhibit similar T cell functions. Furthermore, it is speculated that transcriptional networks and metabolic reprogramming, especially c‐Myc‐mediated glutamine metabolism triggered by mTORC1 and MAPK/ERK pathways, underlie the functional similarity of T cells between tilapia and mammals. Notably, tilapia, frogs, chickens, and mice utilize the same mechanisms to facilitate glutaminolysis‐regulated T cell responses, and restoration of the glutaminolysis pathway using tilapia components rescues the immunodeficiency of human Jurkat T cells. Thus, this study provides a comprehensive picture of T cell immunity in tilapia, sheds novel perspectives for understanding T cell evolution, and offers potential avenues for intervening in human immunodeficiency.