Cargando…
Human-Centered Design to Address Biases in Artificial Intelligence
The potential of artificial intelligence (AI) to reduce health care disparities and inequities is recognized, but it can also exacerbate these issues if not implemented in an equitable manner. This perspective identifies potential biases in each stage of the AI life cycle, including data collection,...
Autores principales: | Chen, You, Clayton, Ellen Wright, Novak, Laurie Lovett, Anders, Shilo, Malin, Bradley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132017/ https://www.ncbi.nlm.nih.gov/pubmed/36961506 http://dx.doi.org/10.2196/43251 |
Ejemplares similares
-
Artificial intelligence and algorithmic bias: implications for health systems
por: Panch, Trishan, et al.
Publicado: (2019) -
Artificial Intelligence Chatbot Behavior Change Model for Designing Artificial Intelligence Chatbots to Promote Physical Activity and a Healthy Diet: Viewpoint
por: Zhang, Jingwen, et al.
Publicado: (2020) -
Artificial intelligence in pediatrics
por: Li, Ya-Wen, et al.
Publicado: (2020) -
Artificial Intelligence and the Implementation Challenge
por: Shaw, James, et al.
Publicado: (2019) -
Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians
por: Asan, Onur, et al.
Publicado: (2020)