Cargando…
ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies
Shigella is one of the commonest causes of diarrhoea worldwide and a major public health problem. Shigella serotyping is based on a standardized scheme that splits Shigella strains into four serogroups and 60 serotypes on the basis of biochemical tests and O-antigen structures. This conventional ser...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132075/ https://www.ncbi.nlm.nih.gov/pubmed/36951906 http://dx.doi.org/10.1099/mgen.0.000961 |
_version_ | 1785031321874071552 |
---|---|
author | Yassine, Iman Hansen, Elisabeth E. Lefèvre, Sophie Ruckly, Corinne Carle, Isabelle Lejay-Collin, Monique Fabre, Laetitia Rafei, Rayane Pardos de la Gandara, Maria Daboussi, Fouad Shahin, Ahmad Weill, François-Xavier |
author_facet | Yassine, Iman Hansen, Elisabeth E. Lefèvre, Sophie Ruckly, Corinne Carle, Isabelle Lejay-Collin, Monique Fabre, Laetitia Rafei, Rayane Pardos de la Gandara, Maria Daboussi, Fouad Shahin, Ahmad Weill, François-Xavier |
author_sort | Yassine, Iman |
collection | PubMed |
description | Shigella is one of the commonest causes of diarrhoea worldwide and a major public health problem. Shigella serotyping is based on a standardized scheme that splits Shigella strains into four serogroups and 60 serotypes on the basis of biochemical tests and O-antigen structures. This conventional serotyping method is laborious, time-consuming, impossible to automate, and requires a high level of expertise. Whole-genome sequencing (WGS) is becoming more affordable and is now used for routine surveillance, opening up possibilities for the development of much-needed accurate rapid typing methods. Here, we describe ShigaPass, a new in silico tool for predicting Shigella serotypes from WGS assemblies on the basis of rfb gene cluster DNA sequences, phage and plasmid-encoded O-antigen modification genes, seven housekeeping genes (EnteroBase’s MLST scheme), fliC alleles and clustered regularly interspaced short palindromic repeats (CRISPR) spacers. Using 4879 genomes, including 4716 reference strains and clinical isolates of Shigella characterized with a panel of biochemical tests and serotyped by slide agglutination, we show here that ShigaPass outperforms all existing in silico tools, particularly for the identification of Shigella boydii and Shigella dysenteriae serotypes, with a correct serotype assignment rate of 98.5 % and a sensitivity rate (i.e. ability to make any prediction) of 100 %. |
format | Online Article Text |
id | pubmed-10132075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Microbiology Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101320752023-04-27 ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies Yassine, Iman Hansen, Elisabeth E. Lefèvre, Sophie Ruckly, Corinne Carle, Isabelle Lejay-Collin, Monique Fabre, Laetitia Rafei, Rayane Pardos de la Gandara, Maria Daboussi, Fouad Shahin, Ahmad Weill, François-Xavier Microb Genom Research Articles Shigella is one of the commonest causes of diarrhoea worldwide and a major public health problem. Shigella serotyping is based on a standardized scheme that splits Shigella strains into four serogroups and 60 serotypes on the basis of biochemical tests and O-antigen structures. This conventional serotyping method is laborious, time-consuming, impossible to automate, and requires a high level of expertise. Whole-genome sequencing (WGS) is becoming more affordable and is now used for routine surveillance, opening up possibilities for the development of much-needed accurate rapid typing methods. Here, we describe ShigaPass, a new in silico tool for predicting Shigella serotypes from WGS assemblies on the basis of rfb gene cluster DNA sequences, phage and plasmid-encoded O-antigen modification genes, seven housekeeping genes (EnteroBase’s MLST scheme), fliC alleles and clustered regularly interspaced short palindromic repeats (CRISPR) spacers. Using 4879 genomes, including 4716 reference strains and clinical isolates of Shigella characterized with a panel of biochemical tests and serotyped by slide agglutination, we show here that ShigaPass outperforms all existing in silico tools, particularly for the identification of Shigella boydii and Shigella dysenteriae serotypes, with a correct serotype assignment rate of 98.5 % and a sensitivity rate (i.e. ability to make any prediction) of 100 %. Microbiology Society 2023-03-23 /pmc/articles/PMC10132075/ /pubmed/36951906 http://dx.doi.org/10.1099/mgen.0.000961 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. |
spellingShingle | Research Articles Yassine, Iman Hansen, Elisabeth E. Lefèvre, Sophie Ruckly, Corinne Carle, Isabelle Lejay-Collin, Monique Fabre, Laetitia Rafei, Rayane Pardos de la Gandara, Maria Daboussi, Fouad Shahin, Ahmad Weill, François-Xavier ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies |
title | ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies |
title_full | ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies |
title_fullStr | ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies |
title_full_unstemmed | ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies |
title_short | ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies |
title_sort | shigapass: an in silico tool predicting shigella serotypes from whole-genome sequencing assemblies |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132075/ https://www.ncbi.nlm.nih.gov/pubmed/36951906 http://dx.doi.org/10.1099/mgen.0.000961 |
work_keys_str_mv | AT yassineiman shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT hansenelisabethe shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT lefevresophie shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT rucklycorinne shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT carleisabelle shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT lejaycollinmonique shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT fabrelaetitia shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT rafeirayane shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT pardosdelagandaramaria shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT daboussifouad shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT shahinahmad shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies AT weillfrancoisxavier shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies |