Cargando…

ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies

Shigella is one of the commonest causes of diarrhoea worldwide and a major public health problem. Shigella serotyping is based on a standardized scheme that splits Shigella strains into four serogroups and 60 serotypes on the basis of biochemical tests and O-antigen structures. This conventional ser...

Descripción completa

Detalles Bibliográficos
Autores principales: Yassine, Iman, Hansen, Elisabeth E., Lefèvre, Sophie, Ruckly, Corinne, Carle, Isabelle, Lejay-Collin, Monique, Fabre, Laetitia, Rafei, Rayane, Pardos de la Gandara, Maria, Daboussi, Fouad, Shahin, Ahmad, Weill, François-Xavier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132075/
https://www.ncbi.nlm.nih.gov/pubmed/36951906
http://dx.doi.org/10.1099/mgen.0.000961
_version_ 1785031321874071552
author Yassine, Iman
Hansen, Elisabeth E.
Lefèvre, Sophie
Ruckly, Corinne
Carle, Isabelle
Lejay-Collin, Monique
Fabre, Laetitia
Rafei, Rayane
Pardos de la Gandara, Maria
Daboussi, Fouad
Shahin, Ahmad
Weill, François-Xavier
author_facet Yassine, Iman
Hansen, Elisabeth E.
Lefèvre, Sophie
Ruckly, Corinne
Carle, Isabelle
Lejay-Collin, Monique
Fabre, Laetitia
Rafei, Rayane
Pardos de la Gandara, Maria
Daboussi, Fouad
Shahin, Ahmad
Weill, François-Xavier
author_sort Yassine, Iman
collection PubMed
description Shigella is one of the commonest causes of diarrhoea worldwide and a major public health problem. Shigella serotyping is based on a standardized scheme that splits Shigella strains into four serogroups and 60 serotypes on the basis of biochemical tests and O-antigen structures. This conventional serotyping method is laborious, time-consuming, impossible to automate, and requires a high level of expertise. Whole-genome sequencing (WGS) is becoming more affordable and is now used for routine surveillance, opening up possibilities for the development of much-needed accurate rapid typing methods. Here, we describe ShigaPass, a new in silico tool for predicting Shigella serotypes from WGS assemblies on the basis of rfb gene cluster DNA sequences, phage and plasmid-encoded O-antigen modification genes, seven housekeeping genes (EnteroBase’s MLST scheme), fliC alleles and clustered regularly interspaced short palindromic repeats (CRISPR) spacers. Using 4879 genomes, including 4716 reference strains and clinical isolates of Shigella characterized with a panel of biochemical tests and serotyped by slide agglutination, we show here that ShigaPass outperforms all existing in silico tools, particularly for the identification of Shigella boydii and Shigella dysenteriae serotypes, with a correct serotype assignment rate of 98.5 % and a sensitivity rate (i.e. ability to make any prediction) of 100 %.
format Online
Article
Text
id pubmed-10132075
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Microbiology Society
record_format MEDLINE/PubMed
spelling pubmed-101320752023-04-27 ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies Yassine, Iman Hansen, Elisabeth E. Lefèvre, Sophie Ruckly, Corinne Carle, Isabelle Lejay-Collin, Monique Fabre, Laetitia Rafei, Rayane Pardos de la Gandara, Maria Daboussi, Fouad Shahin, Ahmad Weill, François-Xavier Microb Genom Research Articles Shigella is one of the commonest causes of diarrhoea worldwide and a major public health problem. Shigella serotyping is based on a standardized scheme that splits Shigella strains into four serogroups and 60 serotypes on the basis of biochemical tests and O-antigen structures. This conventional serotyping method is laborious, time-consuming, impossible to automate, and requires a high level of expertise. Whole-genome sequencing (WGS) is becoming more affordable and is now used for routine surveillance, opening up possibilities for the development of much-needed accurate rapid typing methods. Here, we describe ShigaPass, a new in silico tool for predicting Shigella serotypes from WGS assemblies on the basis of rfb gene cluster DNA sequences, phage and plasmid-encoded O-antigen modification genes, seven housekeeping genes (EnteroBase’s MLST scheme), fliC alleles and clustered regularly interspaced short palindromic repeats (CRISPR) spacers. Using 4879 genomes, including 4716 reference strains and clinical isolates of Shigella characterized with a panel of biochemical tests and serotyped by slide agglutination, we show here that ShigaPass outperforms all existing in silico tools, particularly for the identification of Shigella boydii and Shigella dysenteriae serotypes, with a correct serotype assignment rate of 98.5 % and a sensitivity rate (i.e. ability to make any prediction) of 100 %. Microbiology Society 2023-03-23 /pmc/articles/PMC10132075/ /pubmed/36951906 http://dx.doi.org/10.1099/mgen.0.000961 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
spellingShingle Research Articles
Yassine, Iman
Hansen, Elisabeth E.
Lefèvre, Sophie
Ruckly, Corinne
Carle, Isabelle
Lejay-Collin, Monique
Fabre, Laetitia
Rafei, Rayane
Pardos de la Gandara, Maria
Daboussi, Fouad
Shahin, Ahmad
Weill, François-Xavier
ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies
title ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies
title_full ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies
title_fullStr ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies
title_full_unstemmed ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies
title_short ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies
title_sort shigapass: an in silico tool predicting shigella serotypes from whole-genome sequencing assemblies
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132075/
https://www.ncbi.nlm.nih.gov/pubmed/36951906
http://dx.doi.org/10.1099/mgen.0.000961
work_keys_str_mv AT yassineiman shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT hansenelisabethe shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT lefevresophie shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT rucklycorinne shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT carleisabelle shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT lejaycollinmonique shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT fabrelaetitia shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT rafeirayane shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT pardosdelagandaramaria shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT daboussifouad shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT shahinahmad shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies
AT weillfrancoisxavier shigapassaninsilicotoolpredictingshigellaserotypesfromwholegenomesequencingassemblies