Cargando…
Reconciling experimental catalytic data stemming from structure sensitivity
Experimental data have long served as a valuable resource for model validation and identification of the active site. Yet, literature kinetics data often exhibit significant differences among laboratories for the same catalyst and reaction, but the reasons have remained elusive. Here, we exploit if...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132135/ https://www.ncbi.nlm.nih.gov/pubmed/37123190 http://dx.doi.org/10.1039/d2sc06819b |
_version_ | 1785031329955446784 |
---|---|
author | Zong, Xue Vlachos, Dionisios G. |
author_facet | Zong, Xue Vlachos, Dionisios G. |
author_sort | Zong, Xue |
collection | PubMed |
description | Experimental data have long served as a valuable resource for model validation and identification of the active site. Yet, literature kinetics data often exhibit significant differences among laboratories for the same catalyst and reaction, but the reasons have remained elusive. Here, we exploit if we can rationalize (most of) this variation through catalyst structure sensitivity. We introduce a methodology to build a structure-descriptor-based microkinetic model and investigate the relations between nanoparticle structure and reaction kinetics using the complete methane oxidation on Pt as a model reaction and literature data mining. A volcano-like rate is observed with an optimum coordination number. Unlike common expectations, smaller particles have very low reactivity because of carbon poisoning. Interestingly, most of the data variation can be successfully traced to structure sensitivity. This methodology also enables rapid prediction of kinetic performance and active site determination for designing optimal catalyst structures. It can also serve as a data quality tool to assess experimental outliers. Additional reasons for data variability are discussed. |
format | Online Article Text |
id | pubmed-10132135 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-101321352023-04-27 Reconciling experimental catalytic data stemming from structure sensitivity Zong, Xue Vlachos, Dionisios G. Chem Sci Chemistry Experimental data have long served as a valuable resource for model validation and identification of the active site. Yet, literature kinetics data often exhibit significant differences among laboratories for the same catalyst and reaction, but the reasons have remained elusive. Here, we exploit if we can rationalize (most of) this variation through catalyst structure sensitivity. We introduce a methodology to build a structure-descriptor-based microkinetic model and investigate the relations between nanoparticle structure and reaction kinetics using the complete methane oxidation on Pt as a model reaction and literature data mining. A volcano-like rate is observed with an optimum coordination number. Unlike common expectations, smaller particles have very low reactivity because of carbon poisoning. Interestingly, most of the data variation can be successfully traced to structure sensitivity. This methodology also enables rapid prediction of kinetic performance and active site determination for designing optimal catalyst structures. It can also serve as a data quality tool to assess experimental outliers. Additional reasons for data variability are discussed. The Royal Society of Chemistry 2023-03-27 /pmc/articles/PMC10132135/ /pubmed/37123190 http://dx.doi.org/10.1039/d2sc06819b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Zong, Xue Vlachos, Dionisios G. Reconciling experimental catalytic data stemming from structure sensitivity |
title | Reconciling experimental catalytic data stemming from structure sensitivity |
title_full | Reconciling experimental catalytic data stemming from structure sensitivity |
title_fullStr | Reconciling experimental catalytic data stemming from structure sensitivity |
title_full_unstemmed | Reconciling experimental catalytic data stemming from structure sensitivity |
title_short | Reconciling experimental catalytic data stemming from structure sensitivity |
title_sort | reconciling experimental catalytic data stemming from structure sensitivity |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132135/ https://www.ncbi.nlm.nih.gov/pubmed/37123190 http://dx.doi.org/10.1039/d2sc06819b |
work_keys_str_mv | AT zongxue reconcilingexperimentalcatalyticdatastemmingfromstructuresensitivity AT vlachosdionisiosg reconcilingexperimentalcatalyticdatastemmingfromstructuresensitivity |