Cargando…
Predicting phenotypes from novel genomic markers using deep learning
Summary: Genomic selection (GS) models use single nucleotide polymorphism (SNP) markers to predict phenotypes. However, these predictive models face challenges due to the high dimensionality of genome-wide SNP marker data. Thanks to recent breakthroughs in DNA sequencing and decreased sequencing cos...
Autores principales: | Sehrawat, Shivani, Najafian, Keyhan, Jin, Lingling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132579/ https://www.ncbi.nlm.nih.gov/pubmed/37123455 http://dx.doi.org/10.1093/bioadv/vbad028 |
Ejemplares similares
-
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
por: Najafian, Keyhan, et al.
Publicado: (2023) -
G2PDeep: a web-based deep-learning framework for quantitative phenotype prediction and discovery of genomic markers
por: Zeng, Shuai, et al.
Publicado: (2021) -
Transfer learning for genotype–phenotype prediction using deep learning models
por: Muneeb, Muhammad, et al.
Publicado: (2022) -
Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes
por: Abdollahi-Arpanahi, Rostam, et al.
Publicado: (2020) -
Deep phenotyping: deep learning for temporal phenotype/genotype classification
por: Taghavi Namin, Sarah, et al.
Publicado: (2018)