Cargando…
Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia
BACKGROUND: Isoniazid (INH) resistant Mycobacterium tuberculosis (Hr-TB) is the most common type of drug resistant TB, and is defined as M tuberculosis complex (MTBC) strains resistant to INH but susceptible to rifampicin (RIF). Resistance to INH precedes RIF resistance in almost all multidrug resis...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132600/ https://www.ncbi.nlm.nih.gov/pubmed/37099514 http://dx.doi.org/10.1371/journal.pone.0284737 |
_version_ | 1785031417537757184 |
---|---|
author | Moga, Shewki Bobosha, Kidist Fikadu, Dinka Zerihun, Betselot Diriba, Getu Amare, Misikir Kempker, Russell R. Blumberg, Henry M. Abebe, Tamrat |
author_facet | Moga, Shewki Bobosha, Kidist Fikadu, Dinka Zerihun, Betselot Diriba, Getu Amare, Misikir Kempker, Russell R. Blumberg, Henry M. Abebe, Tamrat |
author_sort | Moga, Shewki |
collection | PubMed |
description | BACKGROUND: Isoniazid (INH) resistant Mycobacterium tuberculosis (Hr-TB) is the most common type of drug resistant TB, and is defined as M tuberculosis complex (MTBC) strains resistant to INH but susceptible to rifampicin (RIF). Resistance to INH precedes RIF resistance in almost all multidrug resistant TB (MDR-TB) cases, across all MTBC lineages and in all settings. Therefore, early detection of Hr-TB is critical to ensure rapid initiation of appropriate treatment, and to prevent progression to MDR-TB. We assessed the performance of the GenoType MTBDRplus VER 2.0 line probe assay (LPA) in detecting isoniazid resistance among MTBC clinical isolates. METHODS: A retrospective study was conducted among M. tuberculosis complex (MTBC) clinical isolates obtained from the third-round Ethiopian national drug resistance survey (DRS) conducted between August 2017 and December 2019. The sensitivity, specificity, positive predictive value, and negative predictive value of the GenoType MTBDRplus VER 2.0 LPA in detecting INH resistance were assessed and compared to phenotypic drug susceptibility testing (DST) using the Mycobacteria Growth Indicator Tube (MGIT) system. Fisher’s exact test was performed to compare the performance of LPA between Hr-TB and MDR-TB isolates. RESULTS: A total of 137 MTBC isolates were included, of those 62 were Hr-TB, 35 were MDR-TB and 40 were INH susceptible. The sensitivity of the GenoType MTBDRplus VER 2.0 for detecting INH resistance was 77.4% (95% CI: 65.5–86.2) among Hr-TB isolates and 94.3% (95% CI: 80.4–99.4) among MDR-TB isolates (P = 0.04). The specificity of the GenoType MTBDRplus VER 2.0 for detecting INH resistance was 100% (95% CI: 89.6–100). The katG 315 mutation was observed in 71% (n = 44) of Hr-TB phenotypes and 94.3% (n = 33) of MDR-TB phenotypes. Mutation at position-15 of the inhA promoter region alone was detected in four (6.5%) Hr-TB isolates, and concomitantly with katG 315 mutation in one (2.9%) MDR-TB isolate. CONCLUSIONS: GenoType MTBDRplus VER 2.0 LPA demonstrated improved performance in detecting INH resistance among MDR-TB cases compared to Hr-TB cases. The katG315 mutation is the most common INH resistance conferring gene among Hr-TB and MDR-TB isolates. Additional INH resistance conferring mutations should be evaluated to improve the sensitivity of the GenoType MTBDRplus VER 2.0 for the detection of INH resistance among Hr-TB cases. |
format | Online Article Text |
id | pubmed-10132600 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-101326002023-04-27 Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia Moga, Shewki Bobosha, Kidist Fikadu, Dinka Zerihun, Betselot Diriba, Getu Amare, Misikir Kempker, Russell R. Blumberg, Henry M. Abebe, Tamrat PLoS One Research Article BACKGROUND: Isoniazid (INH) resistant Mycobacterium tuberculosis (Hr-TB) is the most common type of drug resistant TB, and is defined as M tuberculosis complex (MTBC) strains resistant to INH but susceptible to rifampicin (RIF). Resistance to INH precedes RIF resistance in almost all multidrug resistant TB (MDR-TB) cases, across all MTBC lineages and in all settings. Therefore, early detection of Hr-TB is critical to ensure rapid initiation of appropriate treatment, and to prevent progression to MDR-TB. We assessed the performance of the GenoType MTBDRplus VER 2.0 line probe assay (LPA) in detecting isoniazid resistance among MTBC clinical isolates. METHODS: A retrospective study was conducted among M. tuberculosis complex (MTBC) clinical isolates obtained from the third-round Ethiopian national drug resistance survey (DRS) conducted between August 2017 and December 2019. The sensitivity, specificity, positive predictive value, and negative predictive value of the GenoType MTBDRplus VER 2.0 LPA in detecting INH resistance were assessed and compared to phenotypic drug susceptibility testing (DST) using the Mycobacteria Growth Indicator Tube (MGIT) system. Fisher’s exact test was performed to compare the performance of LPA between Hr-TB and MDR-TB isolates. RESULTS: A total of 137 MTBC isolates were included, of those 62 were Hr-TB, 35 were MDR-TB and 40 were INH susceptible. The sensitivity of the GenoType MTBDRplus VER 2.0 for detecting INH resistance was 77.4% (95% CI: 65.5–86.2) among Hr-TB isolates and 94.3% (95% CI: 80.4–99.4) among MDR-TB isolates (P = 0.04). The specificity of the GenoType MTBDRplus VER 2.0 for detecting INH resistance was 100% (95% CI: 89.6–100). The katG 315 mutation was observed in 71% (n = 44) of Hr-TB phenotypes and 94.3% (n = 33) of MDR-TB phenotypes. Mutation at position-15 of the inhA promoter region alone was detected in four (6.5%) Hr-TB isolates, and concomitantly with katG 315 mutation in one (2.9%) MDR-TB isolate. CONCLUSIONS: GenoType MTBDRplus VER 2.0 LPA demonstrated improved performance in detecting INH resistance among MDR-TB cases compared to Hr-TB cases. The katG315 mutation is the most common INH resistance conferring gene among Hr-TB and MDR-TB isolates. Additional INH resistance conferring mutations should be evaluated to improve the sensitivity of the GenoType MTBDRplus VER 2.0 for the detection of INH resistance among Hr-TB cases. Public Library of Science 2023-04-26 /pmc/articles/PMC10132600/ /pubmed/37099514 http://dx.doi.org/10.1371/journal.pone.0284737 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Moga, Shewki Bobosha, Kidist Fikadu, Dinka Zerihun, Betselot Diriba, Getu Amare, Misikir Kempker, Russell R. Blumberg, Henry M. Abebe, Tamrat Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia |
title | Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia |
title_full | Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia |
title_fullStr | Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia |
title_full_unstemmed | Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia |
title_short | Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia |
title_sort | diagnostic performance of the genotype mtbdrplus ver 2.0 line probe assay for the detection of isoniazid resistant mycobacterium tuberculosis in ethiopia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132600/ https://www.ncbi.nlm.nih.gov/pubmed/37099514 http://dx.doi.org/10.1371/journal.pone.0284737 |
work_keys_str_mv | AT mogashewki diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia AT boboshakidist diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia AT fikadudinka diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia AT zerihunbetselot diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia AT diribagetu diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia AT amaremisikir diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia AT kempkerrussellr diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia AT blumberghenrym diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia AT abebetamrat diagnosticperformanceofthegenotypemtbdrplusver20lineprobeassayforthedetectionofisoniazidresistantmycobacteriumtuberculosisinethiopia |