Cargando…
COVID-19 outbreak prediction using Seq2Seq + Attention and Word2Vec keyword time series data
As of 2022, COVID-19, first reported in Wuhan, China, in November 2019, has become a worldwide epidemic, causing numerous infections and casualties and enormous social and economic damage. To mitigate its impact, various COVID-19 prediction studies have emerged, most of them using mathematical model...
Autores principales: | Kim, Yeongha, Park, Chang-Reung, Ahn, Jae-Pyoung, Jang, Beakcheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132639/ https://www.ncbi.nlm.nih.gov/pubmed/37099535 http://dx.doi.org/10.1371/journal.pone.0284298 |
Ejemplares similares
-
Word2vec convolutional neural networks for classification of news articles and tweets
por: Jang, Beakcheol, et al.
Publicado: (2019) -
The Spectral Underpinning of word2vec
por: Jaffe, Ariel, et al.
Publicado: (2020) -
Specialists, Scientists, and Sentiments: Word2Vec and Doc2Vec in Analysis of Scientific and Medical Texts
por: Chen, Qufei, et al.
Publicado: (2021) -
Word2Vec inversion and traditional text classifiers for phenotyping lupus
por: Turner, Clayton A., et al.
Publicado: (2017) -
PTPD: predicting therapeutic peptides by deep learning and word2vec
por: Wu, Chuanyan, et al.
Publicado: (2019)