Cargando…
An efficient memory reserving-and-fading strategy for vector quantization based 3D brain segmentation and tumor extraction using an unsupervised deep learning network
Deep learning networks are state-of-the-art approaches for 3D brain image segmentation, and the radiological characteristics extracted from tumors are of great significance for clinical diagnosis, treatment planning, and treatment outcome evaluation. However, two problems have been the hindering fac...
Autores principales: | De, Ailing, Wang, Xiulin, Zhang, Qing, Wu, Jianlin, Cong, Fengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132803/ https://www.ncbi.nlm.nih.gov/pubmed/37362765 http://dx.doi.org/10.1007/s11571-023-09965-9 |
Ejemplares similares
-
The thermodynamics of simple materials with fading memory
por: Day, William Alan
Publicado: (1972) -
Optimizing the Energy Efficiency of Unreliable Memories for Quantized Kalman Filtering
por: Kern, Jonathan, et al.
Publicado: (2022) -
Resource-Efficient Fusion over Fading and Non-Fading Reporting Channels for Cooperative Spectrum Sensing
por: Guimarães, Dayan Adionel, et al.
Publicado: (2015) -
Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization
por: Sarhan, Shahenda, et al.
Publicado: (2020) -
Causal Heat Conduction Contravening the Fading Memory Paradigm
por: Herrera, Luis
Publicado: (2019)