Cargando…
AI-assisted prediction of differential response to antidepressant classes using electronic health records
Antidepressant selection is largely a trial-and-error process. We used electronic health record (EHR) data and artificial intelligence (AI) to predict response to four antidepressants classes (SSRI, SNRI, bupropion, and mirtazapine) 4 to 12 weeks after antidepressant initiation. The final data set c...
Autores principales: | Sheu, Yi-han, Magdamo, Colin, Miller, Matthew, Das, Sudeshna, Blacker, Deborah, Smoller, Jordan W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133261/ https://www.ncbi.nlm.nih.gov/pubmed/37100858 http://dx.doi.org/10.1038/s41746-023-00817-8 |
Ejemplares similares
-
QT interval and antidepressant use: a cross sectional study of electronic health records
por: Castro, Victor M, et al.
Publicado: (2013) -
Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia
por: Charpignon, Marie-Laure, et al.
Publicado: (2022) -
Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study
por: Noori, Ayush, et al.
Publicado: (2022) -
SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry
por: Iglesias, Juan E., et al.
Publicado: (2023) -
Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets
por: Billot, Benjamin, et al.
Publicado: (2023)