Cargando…
Simultaneous multi-crop land suitability prediction from remote sensing data using semi-supervised learning
Land suitability models for Canada are currently based on single-crop inventories and expert opinion. We present a data-driven multi-layer perceptron that simultaneously predicts the land suitability of several crops in Canada, including barley, peas, spring wheat, canola, oats, and soy. Available c...
Autores principales: | Bhullar, Amanjot, Nadeem, Khurram, Ali, R. Ayesha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133274/ https://www.ncbi.nlm.nih.gov/pubmed/37100875 http://dx.doi.org/10.1038/s41598-023-33840-6 |
Ejemplares similares
-
Semi-supervised bidirectional alignment for Remote Sensing cross-domain scene classification
por: Huang, Wei, et al.
Publicado: (2023) -
Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
por: Nong, Chunshi, et al.
Publicado: (2022) -
Semi-supervised learning /
Publicado: (2010) -
Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach
por: Ali, Kamran, et al.
Publicado: (2022) -
Semi-Supervised Semantic Segmentation of Remote Sensing Images Based on Dual Cross-Entropy Consistency
por: Cui, Mengtian, et al.
Publicado: (2023)