Cargando…
Analysis of cardiac single-cell RNA-sequencing data can be improved by the use of artificial-intelligence-based tools
Single-cell RNA sequencing (scRNAseq) enables researchers to identify and characterize populations and subpopulations of different cell types in hearts recovering from myocardial infarction (MI) by characterizing the transcriptomes in thousands of individual cells. However, the effectiveness of the...
Autores principales: | Nguyen, Thanh, Wei, Yuhua, Nakada, Yuji, Chen, Jake Y., Zhou, Yang, Walcott, Gregory, Zhang, Jianyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133286/ https://www.ncbi.nlm.nih.gov/pubmed/37100826 http://dx.doi.org/10.1038/s41598-023-32293-1 |
Ejemplares similares
-
Cardiomyocyte Cell-Cycle Regulation in Neonatal Large Mammals: Single Nucleus RNA-Sequencing Data Analysis via an Artificial-Intelligence–Based Pipeline
por: Nguyen, Thanh, et al.
Publicado: (2022) -
Artificial Intelligence Tools for Refining Lung Cancer Screening
por: Espinoza, J. Luis, et al.
Publicado: (2020) -
Artificial Intelligence in Bulk and Single-Cell RNA-Sequencing Data to Foster Precision Oncology
por: Del Giudice, Marco, et al.
Publicado: (2021) -
WINNER: A network biology tool for biomolecular characterization and prioritization
por: Nguyen, Thanh, et al.
Publicado: (2022) -
Artificial intelligence tools for cyber attribution
por: Nunes, Eric, et al.
Publicado: (2018)