Cargando…
Image-based features in machine learning to identify delivery errors and predict error magnitude for patient-specific IMRT quality assurance
OBJECTIVE: To identify delivery error type and predict associated error magnitude by image-based features using machine learning (ML). METHODS: In this study, a total of 40 thoracic plans (including 208 beams) were selected, and four error types with different magnitudes were introduced into the ori...
Autores principales: | Huang, Ying, Pi, Yifei, Ma, Kui, Miao, Xiaojuan, Fu, Sichao, Chen, Hua, Wang, Hao, Gu, Hengle, Shao, Yan, Duan, Yanhua, Feng, Aihui, Zhuo, Weihai, Xu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133379/ https://www.ncbi.nlm.nih.gov/pubmed/36988665 http://dx.doi.org/10.1007/s00066-023-02076-8 |
Ejemplares similares
-
Virtual Patient-Specific Quality Assurance of IMRT Using UNet++: Classification, Gamma Passing Rates Prediction, and Dose Difference Prediction
por: Huang, Ying, et al.
Publicado: (2021) -
Deep Learning for Patient-Specific Quality Assurance: Predicting Gamma Passing Rates for IMRT Based on Delivery Fluence Informed by log Files
por: Huang, Ying, et al.
Publicado: (2022) -
Investigation of Predictors to Achieve Acceptable Lung Dose in T-Shaped Upper and Middle Esophageal Cancer With IMRT and VMAT
por: Shao, Yan, et al.
Publicado: (2021) -
Influence of Clinical and Tumor Factors on Interfraction Setup Errors With Rotation Correction for Vacuum Cushion in Lung Stereotactic Body Radiation Therapy
por: Chen, Hua, et al.
Publicado: (2021) -
Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution: dosiomics and/or deep learning-based radiomics features
por: Huang, Ying, et al.
Publicado: (2022)