Cargando…

Dual adversarial models with cross-coordination consistency constraint for domain adaption in brain tumor segmentation

The brain tumor segmentation task with different domains remains a major challenge because tumors of different grades and severities may show different distributions, limiting the ability of a single segmentation model to label such tumors. Semi-supervised models (e.g., mean teacher) are strong unsu...

Descripción completa

Detalles Bibliográficos
Autores principales: Qin, Chuanbo, Li, Wanying, Zheng, Bin, Zeng, Junying, Liang, Shufen, Zhang, Xiuping, Zhang, Wenguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133464/
https://www.ncbi.nlm.nih.gov/pubmed/37123362
http://dx.doi.org/10.3389/fnins.2023.1043533
Descripción
Sumario:The brain tumor segmentation task with different domains remains a major challenge because tumors of different grades and severities may show different distributions, limiting the ability of a single segmentation model to label such tumors. Semi-supervised models (e.g., mean teacher) are strong unsupervised domain-adaptation learners. However, one of the main drawbacks of using a mean teacher is that given a large number of iterations, the teacher model weights converge to those of the student model, and any biased and unstable predictions are carried over to the student. In this article, we proposed a novel unsupervised domain-adaptation framework for the brain tumor segmentation task, which uses dual student and adversarial training techniques to effectively tackle domain shift with MR images. In this study, the adversarial strategy and consistency constraint for each student can align the feature representation on the source and target domains. Furthermore, we introduced the cross-coordination constraint for the target domain data to constrain the models to produce more confident predictions. We validated our framework on the cross-subtype and cross-modality tasks in brain tumor segmentation and achieved better performance than the current unsupervised domain-adaptation and semi-supervised frameworks.