Cargando…
Dual adversarial models with cross-coordination consistency constraint for domain adaption in brain tumor segmentation
The brain tumor segmentation task with different domains remains a major challenge because tumors of different grades and severities may show different distributions, limiting the ability of a single segmentation model to label such tumors. Semi-supervised models (e.g., mean teacher) are strong unsu...
Autores principales: | Qin, Chuanbo, Li, Wanying, Zheng, Bin, Zeng, Junying, Liang, Shufen, Zhang, Xiuping, Zhang, Wenguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133464/ https://www.ncbi.nlm.nih.gov/pubmed/37123362 http://dx.doi.org/10.3389/fnins.2023.1043533 |
Ejemplares similares
-
Improved U-Net3+ with stage residual for brain tumor segmentation
por: Qin, Chuanbo, et al.
Publicado: (2022) -
Fair classification via domain adaptation: A dual adversarial learning approach
por: Liang, Yueqing, et al.
Publicado: (2023) -
Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification
por: Zhao, Jun, et al.
Publicado: (2022) -
Finger-Vein Recognition Using Heterogeneous Databases by Domain Adaption Based on a Cycle-Consistent Adversarial Network
por: Noh, Kyoung Jun, et al.
Publicado: (2021) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022)