Cargando…
STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
Electroencephalogram (EEG) is a crucial and widely utilized technique in neuroscience research. In this paper, we introduce a novel graph neural network called the spatial-temporal graph attention network with a transformer encoder (STGATE) to learn graph representations of emotion EEG signals and i...
Autores principales: | Li, Jingcong, Pan, Weijian, Huang, Haiyun, Pan, Jiahui, Wang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133470/ https://www.ncbi.nlm.nih.gov/pubmed/37125349 http://dx.doi.org/10.3389/fnhum.2023.1169949 |
Ejemplares similares
-
Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
por: Li, Jingcong, et al.
Publicado: (2021) -
Fusion of EEG-Based Activation, Spatial, and Connection Patterns for Fear Emotion Recognition
por: Pan, Jiahui, et al.
Publicado: (2022) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023) -
Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Multi-channel EEG emotion recognition through residual graph attention neural network
por: Chao, Hao, et al.
Publicado: (2023)