Cargando…
GDNet-EEG: An attention-aware deep neural network based on group depth-wise convolution for SSVEP stimulation frequency recognition
BACKGROUND: Steady state visually evoked potentials (SSVEPs) based early glaucoma diagnosis requires effective data processing (e.g., deep learning) to provide accurate stimulation frequency recognition. Thus, we propose a group depth-wise convolutional neural network (GDNet-EEG), a novel electroenc...
Autores principales: | Wan, Zhijiang, Cheng, Wangxinjun, Li, Manyu, Zhu, Renping, Duan, Wenfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133471/ https://www.ncbi.nlm.nih.gov/pubmed/37123356 http://dx.doi.org/10.3389/fnins.2023.1160040 |
Ejemplares similares
-
SSVEP Extraction Based on the Similarity of Background EEG
por: Wu, Zhenghua
Publicado: (2014) -
EEGformer: A transformer–based brain activity classification method using EEG signal
por: Wan, Zhijiang, et al.
Publicado: (2023) -
On the Quantification of SSVEP Frequency Responses in Human EEG in Realistic BCI Conditions
por: Kuś, Rafał, et al.
Publicado: (2013) -
EARDS: EfficientNet and attention-based residual depth-wise separable convolution for joint OD and OC segmentation
por: Zhou, Wei, et al.
Publicado: (2023) -
In pursuit of visual attention: SSVEP frequency-tagging moving targets
por: de Lissa, Peter, et al.
Publicado: (2020)