Cargando…
Application of EfficientNet‐B0 and GRU‐based deep learning on classifying the colposcopy diagnosis of precancerous cervical lesions
BACKGROUND: Colposcopy is indispensable for the diagnosis of cervical lesions. However, its diagnosis accuracy for high‐grade squamous intraepithelial lesion (HSIL) is at about 50%, and the accuracy is largely dependent on the skill and experience of colposcopists. The advancement in computational p...
Autores principales: | Chen, Xiaoyue, Pu, Xiaowen, Chen, Zhirou, Li, Lanzhen, Zhao, Kong‐Nan, Liu, Haichun, Zhu, Haiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134359/ https://www.ncbi.nlm.nih.gov/pubmed/36629131 http://dx.doi.org/10.1002/cam4.5581 |
Ejemplares similares
-
Colposcopy accuracy in diagnosing cervical precancerous lesions in western Kazakhstan
por: Balmagambetova, Saule, et al.
Publicado: (2020) -
The Accuracy of Cytology, Colposcopy and Pathology in Evaluating Precancerous Cervical Lesions
por: Pleş, Liana, et al.
Publicado: (2022) -
HDR-EfficientNet: A Classification of Hypertensive and Diabetic Retinopathy Using Optimize EfficientNet Architecture
por: Abbas, Qaisar, et al.
Publicado: (2023) -
Ensemble of EfficientNets for the Diagnosis of Tuberculosis
por: Oloko-Oba, Mustapha, et al.
Publicado: (2021) -
Improved EfficientNet for corn disease identification
por: Cai, Jitong, et al.
Publicado: (2023)