Cargando…

Improved Catalytic Performances of the NaOH-Treated ZSM-22 Zeolite in the 1-Butene Skeletal Isomerization Reaction: Effect of External Acid Sites

[Image: see text] In this paper, a series of alkaline-treated ZSM-22 zeolite samples were prepared by treating the parent ZSM-22 zeolite using NaOH aqueous solution with different concentrations. By investigating the effects of alkaline treatment on the parent ZSM-22 zeolite, we discovered that the...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Guoliang, Hu, Yunfeng, Bao, Qiang, Zhang, Jian, Ge, Junping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134461/
https://www.ncbi.nlm.nih.gov/pubmed/37125107
http://dx.doi.org/10.1021/acsomega.2c05478
_version_ 1785031768229806080
author Wu, Guoliang
Hu, Yunfeng
Bao, Qiang
Zhang, Jian
Ge, Junping
author_facet Wu, Guoliang
Hu, Yunfeng
Bao, Qiang
Zhang, Jian
Ge, Junping
author_sort Wu, Guoliang
collection PubMed
description [Image: see text] In this paper, a series of alkaline-treated ZSM-22 zeolite samples were prepared by treating the parent ZSM-22 zeolite using NaOH aqueous solution with different concentrations. By investigating the effects of alkaline treatment on the parent ZSM-22 zeolite, we discovered that the alkaline treatment contributed to the reduction of Brønsted acid sites due to the coverage of extra-framework Al on its external surface. In addition, it was found that the alkaline-treated samples were favorable to the improvement of the isobutene yield and selectivity, while these features appeared to be low for the subsequent acid-washed counterparts in the skeletal isomerization reaction of 1-butene. These results indicate that the catalytic performance of ZSM-22 zeolite is related to reduced amounts of Brønsted acid sites in it. To further reveal the reasons for the promoted catalytic performances of the alkaline-treated ZSM-22 series zeolites, we studied the properties of coke deposited on the two series of samples using Raman spectroscopy and thermogravimetric analysis and mass spectrometry (TG/MS-TPO). It was shown that the carbon deposited on the alkaline-treated series samples was mainly distributed at the outer surface, while the coke was distributed to a relatively lesser extent at the exterior surface for the acid-washed series samples. Moreover, by partially passivating outer acid sites of the parent zeolite, the selected alkaline-treated zeolite, and acid-washed zeolite, their isobutene selectivities were all improved with the decrease in outer acid sites. These phenomena confirmed that the improved catalytic performances of the alkaline-treated samples are related to their decreased external Brønsted acid site density, which further demonstrated that the high isobutene yield and selectivity in the skeletal isomerization reaction of 1-butene is realized via the monomolecular reaction pathway of 1-butene.
format Online
Article
Text
id pubmed-10134461
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101344612023-04-28 Improved Catalytic Performances of the NaOH-Treated ZSM-22 Zeolite in the 1-Butene Skeletal Isomerization Reaction: Effect of External Acid Sites Wu, Guoliang Hu, Yunfeng Bao, Qiang Zhang, Jian Ge, Junping ACS Omega [Image: see text] In this paper, a series of alkaline-treated ZSM-22 zeolite samples were prepared by treating the parent ZSM-22 zeolite using NaOH aqueous solution with different concentrations. By investigating the effects of alkaline treatment on the parent ZSM-22 zeolite, we discovered that the alkaline treatment contributed to the reduction of Brønsted acid sites due to the coverage of extra-framework Al on its external surface. In addition, it was found that the alkaline-treated samples were favorable to the improvement of the isobutene yield and selectivity, while these features appeared to be low for the subsequent acid-washed counterparts in the skeletal isomerization reaction of 1-butene. These results indicate that the catalytic performance of ZSM-22 zeolite is related to reduced amounts of Brønsted acid sites in it. To further reveal the reasons for the promoted catalytic performances of the alkaline-treated ZSM-22 series zeolites, we studied the properties of coke deposited on the two series of samples using Raman spectroscopy and thermogravimetric analysis and mass spectrometry (TG/MS-TPO). It was shown that the carbon deposited on the alkaline-treated series samples was mainly distributed at the outer surface, while the coke was distributed to a relatively lesser extent at the exterior surface for the acid-washed series samples. Moreover, by partially passivating outer acid sites of the parent zeolite, the selected alkaline-treated zeolite, and acid-washed zeolite, their isobutene selectivities were all improved with the decrease in outer acid sites. These phenomena confirmed that the improved catalytic performances of the alkaline-treated samples are related to their decreased external Brønsted acid site density, which further demonstrated that the high isobutene yield and selectivity in the skeletal isomerization reaction of 1-butene is realized via the monomolecular reaction pathway of 1-butene. American Chemical Society 2023-04-11 /pmc/articles/PMC10134461/ /pubmed/37125107 http://dx.doi.org/10.1021/acsomega.2c05478 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Wu, Guoliang
Hu, Yunfeng
Bao, Qiang
Zhang, Jian
Ge, Junping
Improved Catalytic Performances of the NaOH-Treated ZSM-22 Zeolite in the 1-Butene Skeletal Isomerization Reaction: Effect of External Acid Sites
title Improved Catalytic Performances of the NaOH-Treated ZSM-22 Zeolite in the 1-Butene Skeletal Isomerization Reaction: Effect of External Acid Sites
title_full Improved Catalytic Performances of the NaOH-Treated ZSM-22 Zeolite in the 1-Butene Skeletal Isomerization Reaction: Effect of External Acid Sites
title_fullStr Improved Catalytic Performances of the NaOH-Treated ZSM-22 Zeolite in the 1-Butene Skeletal Isomerization Reaction: Effect of External Acid Sites
title_full_unstemmed Improved Catalytic Performances of the NaOH-Treated ZSM-22 Zeolite in the 1-Butene Skeletal Isomerization Reaction: Effect of External Acid Sites
title_short Improved Catalytic Performances of the NaOH-Treated ZSM-22 Zeolite in the 1-Butene Skeletal Isomerization Reaction: Effect of External Acid Sites
title_sort improved catalytic performances of the naoh-treated zsm-22 zeolite in the 1-butene skeletal isomerization reaction: effect of external acid sites
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134461/
https://www.ncbi.nlm.nih.gov/pubmed/37125107
http://dx.doi.org/10.1021/acsomega.2c05478
work_keys_str_mv AT wuguoliang improvedcatalyticperformancesofthenaohtreatedzsm22zeoliteinthe1buteneskeletalisomerizationreactioneffectofexternalacidsites
AT huyunfeng improvedcatalyticperformancesofthenaohtreatedzsm22zeoliteinthe1buteneskeletalisomerizationreactioneffectofexternalacidsites
AT baoqiang improvedcatalyticperformancesofthenaohtreatedzsm22zeoliteinthe1buteneskeletalisomerizationreactioneffectofexternalacidsites
AT zhangjian improvedcatalyticperformancesofthenaohtreatedzsm22zeoliteinthe1buteneskeletalisomerizationreactioneffectofexternalacidsites
AT gejunping improvedcatalyticperformancesofthenaohtreatedzsm22zeoliteinthe1buteneskeletalisomerizationreactioneffectofexternalacidsites