Cargando…

Identification of Exciton Complexes in Charge-Tunable Janus W(Se)(S) Monolayers

[Image: see text] Janus transition-metal dichalcogenide monolayers are artificial materials, where one plane of chalcogen atoms is replaced by chalcogen atoms of a different type. Theory predicts an in-built out-of-plane electric field, giving rise to long-lived, dipolar excitons, while preserving d...

Descripción completa

Detalles Bibliográficos
Autores principales: Feuer, Matthew S. G., Montblanch, Alejandro R.-P., Sayyad, Mohammed Y., Purser, Carola M., Qin, Ying, Alexeev, Evgeny M., Cadore, Alisson R., Rosa, Barbara L. T., Kerfoot, James, Mostaani, Elaheh, Kalȩba, Radosław, Kolari, Pranvera, Kopaczek, Jan, Watanabe, Kenji, Taniguchi, Takashi, Ferrari, Andrea C., Kara, Dhiren M., Tongay, Sefaattin, Atatüre, Mete
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134503/
https://www.ncbi.nlm.nih.gov/pubmed/37058341
http://dx.doi.org/10.1021/acsnano.2c10697
_version_ 1785031777803304960
author Feuer, Matthew S. G.
Montblanch, Alejandro R.-P.
Sayyad, Mohammed Y.
Purser, Carola M.
Qin, Ying
Alexeev, Evgeny M.
Cadore, Alisson R.
Rosa, Barbara L. T.
Kerfoot, James
Mostaani, Elaheh
Kalȩba, Radosław
Kolari, Pranvera
Kopaczek, Jan
Watanabe, Kenji
Taniguchi, Takashi
Ferrari, Andrea C.
Kara, Dhiren M.
Tongay, Sefaattin
Atatüre, Mete
author_facet Feuer, Matthew S. G.
Montblanch, Alejandro R.-P.
Sayyad, Mohammed Y.
Purser, Carola M.
Qin, Ying
Alexeev, Evgeny M.
Cadore, Alisson R.
Rosa, Barbara L. T.
Kerfoot, James
Mostaani, Elaheh
Kalȩba, Radosław
Kolari, Pranvera
Kopaczek, Jan
Watanabe, Kenji
Taniguchi, Takashi
Ferrari, Andrea C.
Kara, Dhiren M.
Tongay, Sefaattin
Atatüre, Mete
author_sort Feuer, Matthew S. G.
collection PubMed
description [Image: see text] Janus transition-metal dichalcogenide monolayers are artificial materials, where one plane of chalcogen atoms is replaced by chalcogen atoms of a different type. Theory predicts an in-built out-of-plane electric field, giving rise to long-lived, dipolar excitons, while preserving direct-bandgap optical transitions in a uniform potential landscape. Previous Janus studies had broad photoluminescence (>18 meV) spectra obfuscating their specific excitonic origin. Here, we identify the neutral and the negatively charged inter- and intravalley exciton transitions in Janus W(Se)(S) monolayers with ∼6 meV optical line widths. We integrate Janus monolayers into vertical heterostructures, allowing doping control. Magneto-optic measurements indicate that monolayer W(Se)(S) has a direct bandgap at the K points. Our results pave the way for applications such as nanoscale sensing, which relies on resolving excitonic energy shifts, and the development of Janus-based optoelectronic devices, which requires charge-state control and integration into vertical heterostructures.
format Online
Article
Text
id pubmed-10134503
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101345032023-04-28 Identification of Exciton Complexes in Charge-Tunable Janus W(Se)(S) Monolayers Feuer, Matthew S. G. Montblanch, Alejandro R.-P. Sayyad, Mohammed Y. Purser, Carola M. Qin, Ying Alexeev, Evgeny M. Cadore, Alisson R. Rosa, Barbara L. T. Kerfoot, James Mostaani, Elaheh Kalȩba, Radosław Kolari, Pranvera Kopaczek, Jan Watanabe, Kenji Taniguchi, Takashi Ferrari, Andrea C. Kara, Dhiren M. Tongay, Sefaattin Atatüre, Mete ACS Nano [Image: see text] Janus transition-metal dichalcogenide monolayers are artificial materials, where one plane of chalcogen atoms is replaced by chalcogen atoms of a different type. Theory predicts an in-built out-of-plane electric field, giving rise to long-lived, dipolar excitons, while preserving direct-bandgap optical transitions in a uniform potential landscape. Previous Janus studies had broad photoluminescence (>18 meV) spectra obfuscating their specific excitonic origin. Here, we identify the neutral and the negatively charged inter- and intravalley exciton transitions in Janus W(Se)(S) monolayers with ∼6 meV optical line widths. We integrate Janus monolayers into vertical heterostructures, allowing doping control. Magneto-optic measurements indicate that monolayer W(Se)(S) has a direct bandgap at the K points. Our results pave the way for applications such as nanoscale sensing, which relies on resolving excitonic energy shifts, and the development of Janus-based optoelectronic devices, which requires charge-state control and integration into vertical heterostructures. American Chemical Society 2023-04-14 /pmc/articles/PMC10134503/ /pubmed/37058341 http://dx.doi.org/10.1021/acsnano.2c10697 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Feuer, Matthew S. G.
Montblanch, Alejandro R.-P.
Sayyad, Mohammed Y.
Purser, Carola M.
Qin, Ying
Alexeev, Evgeny M.
Cadore, Alisson R.
Rosa, Barbara L. T.
Kerfoot, James
Mostaani, Elaheh
Kalȩba, Radosław
Kolari, Pranvera
Kopaczek, Jan
Watanabe, Kenji
Taniguchi, Takashi
Ferrari, Andrea C.
Kara, Dhiren M.
Tongay, Sefaattin
Atatüre, Mete
Identification of Exciton Complexes in Charge-Tunable Janus W(Se)(S) Monolayers
title Identification of Exciton Complexes in Charge-Tunable Janus W(Se)(S) Monolayers
title_full Identification of Exciton Complexes in Charge-Tunable Janus W(Se)(S) Monolayers
title_fullStr Identification of Exciton Complexes in Charge-Tunable Janus W(Se)(S) Monolayers
title_full_unstemmed Identification of Exciton Complexes in Charge-Tunable Janus W(Se)(S) Monolayers
title_short Identification of Exciton Complexes in Charge-Tunable Janus W(Se)(S) Monolayers
title_sort identification of exciton complexes in charge-tunable janus w(se)(s) monolayers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134503/
https://www.ncbi.nlm.nih.gov/pubmed/37058341
http://dx.doi.org/10.1021/acsnano.2c10697
work_keys_str_mv AT feuermatthewsg identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT montblanchalejandrorp identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT sayyadmohammedy identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT pursercarolam identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT qinying identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT alexeevevgenym identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT cadorealissonr identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT rosabarbaralt identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT kerfootjames identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT mostaanielaheh identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT kalebaradosław identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT kolaripranvera identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT kopaczekjan identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT watanabekenji identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT taniguchitakashi identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT ferrariandreac identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT karadhirenm identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT tongaysefaattin identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers
AT ataturemete identificationofexcitoncomplexesinchargetunablejanuswsesmonolayers