Cargando…
Data-Driven Quantitative Structure–Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure
[Image: see text] Traditional methodologies for assessing chemical toxicity are expensive and time-consuming. Computational modeling approaches have emerged as low-cost alternatives, especially those used to develop quantitative structure–activity relationship (QSAR) models. However, conventional QS...
Autores principales: | Chung, Elena, Russo, Daniel P., Ciallella, Heather L., Wang, Yu-Tang, Wu, Min, Aleksunes, Lauren M., Zhu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134506/ https://www.ncbi.nlm.nih.gov/pubmed/37040559 http://dx.doi.org/10.1021/acs.est.3c00648 |
Ejemplares similares
-
Predictive Modeling of Estrogen Receptor Agonism, Antagonism, and Binding Activities Using Machine and Deep Learning Approaches
por: Ciallella, Heather L., et al.
Publicado: (2020) -
Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across
por: Russo, Daniel P., et al.
Publicado: (2019) -
A comprehensive analysis of the animal carcinogenicity data for glyphosate from chronic exposure rodent carcinogenicity studies
por: Portier, Christopher J.
Publicado: (2020) -
Integrating
Concentration-Dependent Toxicity Data
and Toxicokinetics To Inform Hepatotoxicity Response Pathways
por: Russo, Daniel P., et al.
Publicado: (2023) -
Development of Korean CARcinogen EXposure: Assessment of the Exposure Intensity of Carcinogens by Industry
por: Koh, Dong-Hee, et al.
Publicado: (2022)