Cargando…

McSNAC: A software to approximate first-order signaling networks from mass cytometry data

BACKGROUND: Mass cytometry (CyTOF) gives unprecedented opportunity to simultaneously measure up to 40 proteins in single cells, with a theoretical potential to reach 100 proteins. This high-dimensional single-cell information can be very useful in dissecting mechanisms of cellular activity. In parti...

Descripción completa

Detalles Bibliográficos
Autores principales: Wethington, Darren, Mukherjee, Sayak, Das, Jayajit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134772/
https://www.ncbi.nlm.nih.gov/pubmed/37123637
http://dx.doi.org/10.15302/j-qb-022-0308
Descripción
Sumario:BACKGROUND: Mass cytometry (CyTOF) gives unprecedented opportunity to simultaneously measure up to 40 proteins in single cells, with a theoretical potential to reach 100 proteins. This high-dimensional single-cell information can be very useful in dissecting mechanisms of cellular activity. In particular, measuring abundances of signaling proteins like phospho-proteins can provide detailed information on the dynamics of single-cell signaling processes. However, computational analysis is required to reconstruct such networks with a mechanistic model. METHODS: We propose our Mass cytometry Signaling Network Analysis Code (McSNAC), a new software capable of reconstructing signaling networks and estimating their kinetic parameters from CyTOF data. McSNAC approximates signaling networks as a network of first-order reactions between proteins. This assumption often breaks down as signaling reactions can involve binding and unbinding, enzymatic reactions, and other nonlinear constructions. Furthermore, McSNAC may be limited to approximating indirect interactions between protein species, as cytometry experiments are only able to assay a small fraction of protein species involved in signaling. RESULTS: We carry out a series of in silico experiments here to show (1) McSNAC is capable of accurately estimating the ground-truth model in a scalable manner when given data originating from a first-order system; (2) McSNAC is capable of qualitatively predicting outcomes to perturbations of species abundances in simple second-order reaction models and in a complex in silico nonlinear signaling network in which some proteins are unmeasured. CONCLUSIONS: These findings demonstrate that McSNAC can be a valuable screening tool for generating models of signaling networks from time-stamped CyTOF data.