Cargando…

Effective Improvement of the Oxidative Stability of Acer truncatum Bunge Seed Oil, a New Woody Oil Food Resource, by Rosemary Extract

Acer truncatum Bunge is a versatile, oil-producing, woody tree natively and widely distributed in northern China. In 2011, The People’s Republic of China’s Ministry of Health certified Acer truncatum seed oil (Aoil) as a new food resource. Unsaturated fatty acids account for up to 92% of the entire...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Yue, Huang, Yeqin, Dong, Yanmei, Zhang, Wenying, Xia, Fei, Bai, Hongtong, Stevanovic, Zora Dajic, Li, Hui, Shi, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135269/
https://www.ncbi.nlm.nih.gov/pubmed/37107264
http://dx.doi.org/10.3390/antiox12040889
Descripción
Sumario:Acer truncatum Bunge is a versatile, oil-producing, woody tree natively and widely distributed in northern China. In 2011, The People’s Republic of China’s Ministry of Health certified Acer truncatum seed oil (Aoil) as a new food resource. Unsaturated fatty acids account for up to 92% of the entire Aoil. When Aoil is processed or stored, it can easily oxidize. In this study, the effects of rosemary (Rosmarinus officinalis L.) extract on the oxidation stability of Aoil were analysed from multiple angles. The results of radical scavenging ability, malondialdehyde, and free fatty acid reveal that rosemary crude extract (RCE), rosmarinic acid (RA), and carnosic acid (CA) can significantly inhibit the oxidation of Aoil, and CA has the best oxidative stability for Aoil among the tested components of the crude rosemary. The delayed oxidation ability of CA for Aoil was slightly weaker than that of tert-butylhydroquinone (TBHQ), but stronger than that of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and α-tocopherol (α-T), which was confirmed by microstructures, kinematic viscosity, Aoil weight change, and functional group. Additionally, CA-enriched Aoil had the smallest content of volatile lipid oxidation products. Moreover, lecithin-CA particles were added to enhance the oxidative stability of Aoil. These findings show that CA is a potent antioxidant, capable of successfully preventing Aoil oxidation.