Cargando…

The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients

Beta-lactams (BL) are the first line agents for the antibiotic management of critically ill patients with sepsis or septic shock. BL are hydrophilic antibiotics particularly subject to unpredictable concentrations in the context of critical illness because of pharmacokinetic (PK) and pharmacodynamic...

Descripción completa

Detalles Bibliográficos
Autores principales: Novy, Emmanuel, Martinière, Hugo, Roger, Claire
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135361/
https://www.ncbi.nlm.nih.gov/pubmed/37107043
http://dx.doi.org/10.3390/antibiotics12040681
Descripción
Sumario:Beta-lactams (BL) are the first line agents for the antibiotic management of critically ill patients with sepsis or septic shock. BL are hydrophilic antibiotics particularly subject to unpredictable concentrations in the context of critical illness because of pharmacokinetic (PK) and pharmacodynamics (PD) alterations. Thus, during the last decade, the literature focusing on the interest of BL therapeutic drug monitoring (TDM) in the intensive care unit (ICU) setting has been exponential. Moreover, recent guidelines strongly encourage to optimize BL therapy using a PK/PD approach with TDM. Unfortunately, several barriers exist regarding TDM access and interpretation. Consequently, adherence to routine TDM in ICU remains quite low. Lastly, recent clinical studies failed to demonstrate any improvement in mortality with the use of TDM in ICU patients. This review will first aim at explaining the value and complexity of the TDM process when translating it to critically ill patient bedside management, interpretating the results of clinical studies and discussion of the points which need to be addressed before conducting further TDM studies on clinical outcomes. In a second time, this review will focus on the future aspects of TDM integrating toxicodynamics, model informed precision dosing (MIPD) and “at risk” ICU populations that deserve further investigations to demonstrate positive clinical outcomes.