Cargando…
Machine Learning for Brain MRI Data Harmonisation: A Systematic Review
Background: Magnetic Resonance Imaging (MRI) data collected from multiple centres can be heterogeneous due to factors such as the scanner used and the site location. To reduce this heterogeneity, the data needs to be harmonised. In recent years, machine learning (ML) has been used to solve different...
Autores principales: | Wen, Grace, Shim, Vickie, Holdsworth, Samantha Jane, Fernandez, Justin, Qiao, Miao, Kasabov, Nikola, Wang, Alan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135601/ https://www.ncbi.nlm.nih.gov/pubmed/37106584 http://dx.doi.org/10.3390/bioengineering10040397 |
Ejemplares similares
-
Machine Learning for Medical Image Translation: A Systematic Review
por: McNaughton, Jake, et al.
Publicado: (2023) -
Guidance for the Harmonisation and Improvement of Economic Evaluations of Personalised Medicine
por: Vellekoop, Heleen, et al.
Publicado: (2021) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
por: Dinsdale, Nicola K., et al.
Publicado: (2021) -
Recent Machine Learning Progress in Lower Limb Running Biomechanics With Wearable Technology: A Systematic Review
por: Xiang, Liangliang, et al.
Publicado: (2022) -
Machine learning methods for the study of cybersickness: a systematic review
por: Yang, Alexander Hui Xiang, et al.
Publicado: (2022)